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Abstract 
Biology demonstrates high levels of fault tolerance in 
all instances. This paper documents a demonstration 
system that takes inspiration from the immune system 
and embryonic processes to acquire some of these fault 
tolerant properties in hardware circuits. A multi-layer 
immune system is used as fault detection; a negative 
selection algorithm is used at a system level to identify 
non-self states. These are localised by further tests. 
Reconfiguration of the embryonic array accommodates 
the faults located. The detector set for the negative 
selection algorithm is currently derived by hand, 
although appropriate learning algorithms are identified 
and commented upon. 

1 INTRODUCTION  
As systems become more complex it becomes 
increasingly difficult to provide comprehensive fault 
testing to determine the validity of the system. Hence 
faults can remain in a system which can manifest 
themselves as errors. Furthermore, faults may be 
introduced into a hardware system from external 
sources such as electromagnetic interference. 
Components within a system can die; no transistor will 
function forever. These faults can ultimately cause a 
system to fail. The ability of a system to function in the 
presence of faults, to become fault tolerant, is a 
continually increasing area of research.  

Through millions of years of refinement biology has 
produced many living creatures that are remarkably 
fault tolerant. They can survive injury, damage, wear 
and tear, and are under continual attack from other 
living entities in the form of infectious pathogens. This 
paper details a fault tolerant circuit that takes its 
inspiration from some of the fault tolerance techniques 
found in biology.  

A hardware multilayered artificial immune system is 
used as a fault detection system upon an embryonic 
array (Tempesti 1998, Ortega 2000) which can then 
accommodate the faults. The embryonic array is a 

homogeneous array of logic units (called cells) that use 
their location within the array to extract appropriate 
configuration data. Each cell contains all the 
configuration details of all cells and hence can perform 
any cell’s function as required.   

This is part of the POEtic project which aims to produce 
a circuit that combines other forms of bio-inspired 
techniques (POEtic 2002). These include phylogeny 
(P), the ability of a population of individuals to change 
from one generation to the next in an evolutionary 
manner, ontogeny (O), the developmental processes of 
an organism’s growth. Multi-cellular organisms grow 
from a single cell that contains all the necessary 
information, the current implementation of which is the 
embryonic array. Finally epigenesis (E), the learning 
process of an individual. This can not only be found in 
the nervous system but also the some areas of the 
immune system which learn to recognise pathogens. 

 

Ultimately the PEOtic device will be produced in 
silicon using ASIC (Application Specific Integrated 
Circuit) fabrication. However, this paper details the 
initial stages of just the immune system upon an 
embryonic array. Although only simulated results are 
given in this paper the system will shortly be 
implemented in a commercial Field Programmable Gate 
Array (FPGA).   

2 BACKGROUND INFORMATION  

2.1 ARTIFICIAL IMMUNE SYSTEMS 
The immune system found in higher organisms is a 
multilayered, distributed system that is robust and can 
identify numerous pathogens and other harmful effects.  
Many of the properties found in such a system would be 
most advantageous in many computer and other 
systems. Artificial immune systems do just this. They 
have been applied to many different application areas, 
such as: optimisation techniques (Hajela 1999, Endo 



1998), novel implementations of neural networks 
(Hoffmann 1986), anomaly detection (Kim 1999, 
Forrest 1997), pattern recognition (Hunt 1996, 
Dasgupta 1999) inductive problem solving (Slavov 
1998, Nikolaev 1999) control (Ishiguro 1997), 
industrial process monitoring (Ishiguru 1994, Ishida 
1993), fault tolerant software (Xanthakis 1996) and 
hardware fault tolerance (immunotronics) (Bradley 
2000a, 2000b, 2001, 2002). Further information, 
surveys and reviews can be found in Dasgupat and 
Attoh-Okine (Dasgupta 1997), de Castro (Castro 1999) 
and de Castro and Von Zuben (Castro 2000). 

Of the many algorithms and systems researched, many 
make use of the negative selection algorithm. 
Developed by Forrest et al. (Forrest 1994), the negative 
selection algorithm is based upon the detection of non-
self from self, as found within the immune system. 
Various immune cell types (such as lymphocytes) have 
receptors that allow them to bind to specific sets of 
proteins. The maturation of each lymphocyte cell 
involves the presentation of proteins that are naturally 
present within the body (self). Lymphocytes that bind 
with them are destroyed. Hence, when released within 
the body, binding to a protein indicates it is non-self and 
may be a harmful pathogen. See Janeway (1999), 
Kimball (2002), de Castro  (1999) and Alberts (1994) 
for more details of immune systems. Forrest uses a 
string to represent the systems state; partial matching of 
these strings is used to distinguish between self and 
non-self. This can be considered similar to the binding 
of some lymphocytes. The negative selection algorithm 
can be summarised as follows: 

• A set of self strings, S, are defined. Each is of a 
length, l, of a finite alphabet. The set of strings 
can be gathered during operation in an 
application dependent manner to describe the 
state of the application. 

• A set of detectors, R, is generated which fails 
to partially match any member of the self set,  
S. The partial match used by Forrest is defined 
as a match of c contiguous bits within the 
string’s length.  

• The state of the device under test is monitored. 
Under normal operation this would generate a 
member of the self set, S. However, an 
abnormal process may generate a non-member 
of S which can be matched by a member of the 
detector set R. 

The detector sets have been generated by a random 
process, more efficient algorithms (D'haeseleer 1995) 
and evolutionary processes (Kim 1999), including 
library selection (Hunt 1996). Detectors that match self 
are destroyed in a similar manner to the biological 
immune system.  

2.2 IMMUNOTRONICS  
All the applications listed are software implementations 
of an artificial immune system. The only hardware 
implementation found to date is Immunotronics 

(immune + electronics) by Bradley and Tyrrell (Bradley 
2000a, 2000b, 2001, 2002). This makes use of a 
negative selection algorithm to identify faults within a 
hardware circuit, specifically a finite state machine. The 
current state, next state and the current inputs are used 
to define the current transition of the machine. Some of 
the transitions are not present in normal, error free 
operation and so are considered as non-self. 
Identification of such non-self indicates the presents of 
an error. 

A 4 bit BCD counter implemented upon a Xilinx Virtex 
FPGA was immunised. The detector set was generated 
offline using both random techniques and the greedy 
algorithm (D'haeseleer 1995). The detectors themselves 
were implemented using a content addressable memory 
(CAM) (Xilinx 1999). This allows all the elements 
within the memory to be compared with the current 
state very quickly. Partial matching based upon the 
number of contiguous bits was employed. Experimental 
results showed that a fault coverage of 93% could be 
achieved with 103 detectors, which constitutes 10% of 
all possible error, and therefore detector, states.  

This is very impressive but requires a CAM of 103 
words, each 10 bits in width. This is vast in size 
compared to the counter that was being immunised. 
However, the size of the detectors is not dependant on 
the complexity of the circuit being immunised. It might 
be considered that the counter is the wrong granularity. 
Also a biological immune system never tries to provide 
a fault free functionality. The underlying system 
requires some inherent fault tolerance; indeed the 
immune system will typically kill off infected cells. The 
biological entity can easily accommodate this due to the 
vast quantity of redundancy.  

It is therefore more appropriate to use an immune 
system at a system, or sub-system level. It would not 
now be used to identify every error, but unusual 
situations that indicate something erroneous has 
occurred. If a robot controller is considered, the 
immune system would provide monitoring for situations 
that should not occur. This may include situations such 
as a robot that is  heading for an object. 

2.3 EMBRYONICS 
All multi-cellular organisms start life as a single cell. 
This cell divides repeatedly to generate numerous 
identical copies of itself. Each cell contains all the 
information necessary to create the entire entity – the 
genotype. As the number of cells increases 
differentiation takes place; different cells start to change 
to provide different, specialised functionality. The 
appropriate section of the genotype (the appropriate 
gene or genes) is selected based upon the cell’s position 
as well as other factors. 

Embryonics (embryo + electronics) is inspired by the 
cloning and differentiation of cells within multi-cellular 
organisms to generate electronic circuits with some of 
the properties of such organisms (Tempesti 1998, 
Ortega 2000, Prodan 2001, Stauffer 2001). An 



embryonic array consists of a homogeneous array of 
cells, each containing the full specification of the 
device, together with a processing element and control. 
The coordinate position of each cell is calculated 
dependent upon  its neighbours; this is used to perform 
the appropriate section of the genotype. Figure 1 gives 
an example of some of the major elements of a generic 
array. Implementations to date typically use a very 
simple functional unit (a two input multiplexer), 
although a number of these units have been included in 
a cell. These sub-sections of the cell have been termed 
molecules. 

Errors within the array are accommodated by killing the 
particular cell. The routing becomes transparent and the 
coordinate system no longer increments, thus the next 
cell takes over the functionality of the faulty cell. The 
array contains spare cells that are not utilised until a 
fault occurs.  

To maintain cellular alignment removing the row or 
column that contains the error is typical (see Figure 2). 
It should be reiterated that no configuration data has to 
be recalculated or moved; just the change in coordinate 
is all that is required for the cells to reconfigure 
themselves. Fault avoidance has also been performed at 
the molecular level. As many faults as there are spare 
cells can be handled. 

 

 
Figure 1: Embryonic Array 

Implementations to date use replication of the 
functional units and a comparator to provide built in self 
tests (BISTS). At present it is assumed that the routing 
and control are fault free. 

 
Figure 2: Accommodation of Fault 

3 THE SYSTEM  

3.1 OVERVIEW 
The new system proposed uses a number of layers to 
provide fault detection using the immune system for 
inspiration. The top level is a negative selection 
algorithm that learns and is analogous to the acquired 
immune system. This can work at either a system or 
subsystem level and monitors the state of the system for 
non-self. When non-self is identified the whole system 
could be relocated by killing the cells within the 
embryonic array. However, such resources are rarely 
available and so a second layer is used to localise the 
fault. This could take many forms; here a number of 
configurations are loaded which perform a number of 
tests. The device could be tested in sections with a 
reduced functionality, or in a roving self-test area 
(STAR) (Emmert 2000, Abramovic 2001). In this 
example the device is briefly placed in a safe state and 
taken offline while the testing takes place, in a similar 
manner to Sundararajan (2001). Cells that have errors 
are identified and killed. These tests do not learn and 
hence could be considered to be mapped to the 
biological innate immune system.  

A simple embryonic array was generated to provide the 
ability to reconfigure around faults that were found. The 
criteria of the array was to provide suitable functionality 
to implement the immune system and to enable it to be 
implemented on a commercial FPGA. Therefore it may 
bear little resemblance to the embryonic array that will 
be produced in the final POEtic tissue. The immune 
system will provide testing for many of the areas that 
current implementations of embryonics assume to be 
fault free. 

A simple example application is used to demonstrate 
the system. This takes the form of the simplest of robot 
controllers which has three single bit inputs and two 
single bit outputs; the inputs represent the detection of 
an object to the robot’s left, front and right. The outputs 
represent signals to the robot’s left and right motors. 
Hence a signal on the left motor will turn the device to 
the right, both motors will cause it to travel forward and 
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a signal on the right motor will turn the robot to the left. 
This is shown in Figure 3. 

 
Figure 3: Test System 

The nature of the controller is not important; in this 
demonstration it took the form of a simple lookup table 
which was driven by a linear feedback shift register to 
generate a random, complete set of inputs. 

When the outputs are considered with the inputs there 
are a number of states that would be considered as 
normal (self-states) and those that would be considered 
as abnormal (non-self). An example of this would be 
the detection of a object ahead with both motors driving 
the robot into it. A complete set of these non-self states 
is given in Table 1. In this simple example the states 
were determined by hand, although an automated 
learning capability is ideal. Details of learning 
processes are given in section 5.1. 

 

Input states Outputs 

Left Ahead Right Left Right 

0 0 1 1 0 

0 1 0 1 1 

0 1 1 1 0 

0 1 1 1 1 

1 0 0 0 1 

1 0 1 0 1 

1 0 1 1 0 

1 1 0 0 1 

1 1 0 1 1 

Table 1: Non-self Sates 

3.2 THE EMBRYONIC ARRAY 
The embryonic array is based upon the hardware-
orientated arrays produced by Ortega and Tyrrell 
(Ortega 2000). However, many changes were required. 
Each cell of the array is constructed from a preset 
number of molecules. Dedicated hardware is used to 

generate other cell functionality, such as address 
calculation, gene selection and maintaining the cell’s 
state. Each molecule contains a four input lookup table 
(LUT) and a D-type flip-flop. A three bit bus connects 
each molecule to its four nearest neighbours via a 
switch block that provides full connectivity. No direct 
connections (that by-passed the switch block) are 
present between molecules. The output of the 
molecule’s LUT or flip-flop can also be connected to 
any of the switch block’s outputs. Each input of the 
LUT can be connected to any of the switch block’s 
inputs. See Figure 4. There is no distinction between 
neighbouring molecules within the same cell and the 
neighbouring cells. 

The configuration of each molecule is controlled by a 
configuration register; each bit of this register is 
implemented using a 16 bit shift register / 4 bit LUT 
(i.e. the basic LUT of many FPGAs). Hence, each bit 
has up to 16 possible options to be selected from. All 
configuration registers of a cell are linked into a 
continuous shift register which will contain the 
configuration of all the cells, i.e. the genotype of the 
array. Therefore, up to 16 different configurations, or 
genes, can be stored and the appropriate gene selected 
dependent upon the cell’s location and state. The 
genotype is distributed, in parallel to each cell, to 
configure the whole array. 

 

 
Figure 4: Molecule Block Diagram. Note the output can 

bypass the D-type if required. 

The coordinates for each cell are calculated based upon 
its neighbours below and to its left; each cell increments 
the address in the x and y axis which is then propagated 
on. A mapping, from the coordinates to the selection of 
the actual gene used, is provided via a lookup table. The 
mapping data is present at the head of the genotype and 
allows the same gene to be present in more than one, or 
no cells, as required.   

Faults are accommodated by typically killing the entire 
column in which the faulty cell is present. A gene is 
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selected that sets all the switch blocks to be transparent 
and the cell coordinates are no longer incremented.  
However, it is also possible to kill a row. This is 
necessary if the cell will not die appropriately or there is 
a fault present in the transparency of the cell. This 
allows a cell to be completely removed, no matter the 
degree of damage (see Figure 5). Each molecule has the 
ability to use its functional output to indicate that the 
cell should die and the row, or column should go 
transparent. This is controlled via another configuration 
bit. 

 
Figure 5: Possible reconfigurations to avoid faults 

Control of the cell’s state is achieved by a small state 
machine. 

3.3 THE ARTIFICIAL IMMUNE SYSTEM 
As stated, the fault detection takes the form of a number 
of layers. The top-most layer is the implementation of a 
negative selection algorithm. 

3.3.1 The Negative Selection Algorithm and its 
Implementation 

Using the negative selection algorithm to identify 
unusual situations at system level reduces the number of 
error states dramatically. In this example the number is 
reduced to such an extent that there are more self states 
than non-self states. This makes partial matching 
between detectors and the current state no longer 
possible, since the partial match is more likely to match 
with another self state than non-self state. The number 
of holes becomes too large to be practical, even with 
appropriate changes in the state representations 
(Hofmeyr 1999). The nature of the partial match within 
the negative selection algorithm (and in biological 
systems) is very powerful and, some may argue, a key 
component of the system. It allows a greatly reduced set 
of detectors to identify a wider range of pathogens; the 
clonal selection process (the process by which the 
lymphocytes are chosen for replication) also requires a 
degree of match to function correctly. However, when 
implemented in hardware there are a number of 
constraints and restrictions that prevent full advantage 
of the partial matching. The luxury of complex software 
algorithms is not available. Hardware systems tend to 
maximise the hardware present and so non-used states 
or conditions are minimised. Hence, most situations 
would not produce the very high ratios of self to non-

self that occur in biology and provide the great power of 
partial matching.  

The reduced number of non-self states, and the small 
number of bits in this example allows for complete 
detector sets which are still very small. With a detector 
of only five bits a complete comparison can be 
implemented in a simple five bit lookup table 
(implemented in three 4 bit LUTs). This compares 
favourably with the typical CAM implementation used 
in Bradley (2001) which required a LUT for every two 
bits of a detector and used over 100 detectors.   
The system still identifies non-self states which is the 
fundamental aspect of the algorithm. 

The implementation of the detectors is very simple as 
can be seen in Figure 6. The three LUTs provide the 
logic necessary to produce an error output for the non-
self states shown in Table 1. 

 
Figure 6: System block diagram 

The array simulated used 10 molecules in a cell (two 
columns of five) which allowed the linear feedback 
shift register and LUTs for the controller to be 
implemented in one cell and the detectors in a second 
cell.  

3.3.2 Innate Layer 
When a non-self state is identified the error must be 
located and accommodated. This is achieved by 
reconfiguring the device and performing test patterns at 
a low level. The number and type of tests performed can 
generate an exhaustive test sequence.  

Replication of the functional units within the embryonic 
array has been employed in previous implementations. 
This provides fault tolerance of the functional units with 
acceptable overheads and could be included as an 
additional layer (in biology, cells continually check 
their functionality and will die by apoptosis if an error 
is located, Kimball 2002). The tests would therefore 
concentrate on the routine and switching of the array, 
which is much harder to produce by replication. These 
would be similar in nature to the offline test detailed in 
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Sundararajan (2001) or those performed by the roving 
star  (Emmert 2000, Abramovic 2001). In essence each 
configuration of a switch block is induced using a 
suitable test pattern generator and tester, as shown in 
Figure 7. A large number of tests would be performed 
in parallel, with the repetition of the same gene in a 
number of the cells.  

 
Figure 7: Example test configuration 

The tests are typically kept within the cell which is 
killed by the identification of an error within it. This 
greatly simplifies any control or localisation needed to 
reconfigure the device and avoid the fault. Some tests 
require the data paths between cells to be included; this 
too causes no complications since the whole column or 
row is typically avoided. 

With an appropriate architecture it would also be 
possible to test the correct functionality of the cell’s 
control and status and its ability to die. Hence all 
aspects of the device could be tested. 

A control process is necessary to carry out this 
reconfiguration and error checking. On the final POEtic 
device a microcontroller will be included within the 
device which will be utilised. However, this generates a 
large single point of failure. In an ultimate solution the 
controller would be implemented within the array itself 
which then offers all the fault tolerant protection 
provided. It should be noted that unlike many other 
FPGA fault tolerant techniques that use reconfiguration 
to locate and/or avoid faults (such as Blanton 1998) 
there is no complex reconfiguration calculation 
required; this is all achieved by the embryonic array. 
Hence, an integrated controller would be practical. With 
a reasonable number of test configurations the memory 
required to store them may become inappropriate. 
However, the nature of the test genes is such that they 
are very repetitious and so they could be simply 
constructed from a number of small subsets of the gene. 

Within the simulation of the test application the detector 
set was replicated within its cell to prevent false 
negatives. An inconsistent result from the two detector 
sets causes the immune cell to be killed. Since this 
example application implements the controller in a 
single cell, any non-self detected causes that cell to be 
killed and its column made transparent. However, 
innate tests are performed to check the correct 

transparency of the device. Failure of this test results in 
the appropriate row being made transparent.  

This transparency test requires two configurations. 
These are shown in Figure 8 and Figure 9. Each row (of 
three cells) is the same. In the first test, coordinate (0,0) 
contains a gene A, while all the other cells use the gene 
to make them transparent (as shown in Figure 8). This 
generates a test pattern which passes the length of the 
row and is mapped back again. The switching within 
the test cell is such that the data passes through all 
horizontal paths and switches to a test molecule at the 
bottom of the cell. Notice that the test is repeated to 
prevent an error in the test generating a false negative. 
A second configuration is required to test the 
transparency of the end cell, as shown in Figure 9. Gene 
B is the same as A but it is mirrored in the x axis.  

It is necessary for the routing to map the test signals 
back; this can be achieved in the end cell or externally, 
as shown. 

 
Figure 8: Transparency test 
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Figure 9: Second transparency test 

4 RESULTS AND DISCUSIONS  
Figure 10 shows a section of simulation of the circuit. 
The circuit was written in synthesisable VHDL, 
optimised for a Xilinx Virtex. Hence the circuit will 
easily be implemented in hardware. The lower set of 
traces is an expansion of a section of the upper. Here 
the inputs and the outputs to the controller can be seen 
(labelled “controller”). The lower three traces are the 
detector signals and the upper two traces are the 
appropriate response for the motor outputs. At time 
5500ns a stuck at 1 fault is injected on the output of one 
of the controller outputs (the upper on the trace). This 
places the device in an error state and an error signal is 
generated. This causes cell 0,0 to pass from an OK 
state, through a brief reconfiguration state, to a dead 
state. The selected gene goes from 0001 to 0000, the 
transparent gene. The state of the device goes from 
normal to test1. This can be seen more clearly in the 
upper set of traces, showing a larger time scale. Both 
test conditions are performed before returning to a 
normal state. The test passes correctly and no further 
action is performed. Notice that the controller output 
was on cell 0,0 which, after the testing and 
reconfiguration, remains at a logic level 0. Cell 1,0 has 
now taken over the functionality of the controller. The 
actual output of the device would remain the same.  

A similar stuck at fault is injected in the simulation 
shown in Figure 11. However, the fault is inserted on 
the connection bus between molecules. This error can 
not be avoided by a horizontal relocation since the stuck 
at fault prevents the cell from becoming transparent. 

It can be seen that at time 5500ns the fault is injected 
and as before the cell is killed. The two test 
configurations are loaded and the tests are performed. 
This time the second test fails and the Y error line is 
activated which induces the cell to die and for the row 
to become transparent. The combined outputs of a 
number of cells are shown in the lower three traces. 
Before the error is introduced (and after the 
configuration) the functionality of the controller is 
performed by cell 0,0. This is labelled Output Active on 
the figure. After the reconfiguration, cell 1,1 now 
provides the correct output. Notice that cell 1,0, the cell 
that was used in the previous example, is no longer used 
since the y=0 row can not be guaranteed to function 
correctly.  

 
 

 
 

 

 
Figure 10: Error injection in molecule function output 

 
Figure 11: Error injected into connecting bus 

5 OTHER CONSIDERATIONS 

5.1 LEARNING 
In the example simulated the detector set was generated 
by hand. However, the ability to learn is paramount to 
the adaptive immune system. During the maturation of 
B and T cells in a biological immune system, they are 
exposed to self proteins; those that bind to these are 
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destroyed. This can be achieved in this application by 
first setting all the states as error conditions (i.e. filling 
the LUTs with 1s). A learning period, with fault free 
operation, is used to present self states to the immune 
system; each state that occurs is self and this state is 
removed from the LUT. This type of process is 
common in many artificial immune systems to generate 
a detector set. Within a hardware situation there are 
some difficulties. As stated, the process has to be error 
free  (which is sometimes difficult to guarantee) and all 
self states have to be demonstrated. This becomes a 
non-trivial process in a complex system. Adaptive 
systems (such as those that will populate the final 
POEtic device) also pose problems. 

In biological systems it is not guaranteed that all cells 
are exposed to all self proteins. Processes exist that 
allow self binding cells to be accommodated. B cells 
require co-stimulation by helper T cells (too complex 
for a hardware system). The state of the immune system 
also changes the response of a binding cell. If a killer T 
cell binds to a protein without any other stimulation, it 
is quite possible that the cell is binding with self and no 
action is taken. However, if there are other indicators 
that pathogens are present then the binding cell may 
well replicate and kill the infected cells. Cell damage 
(presented to the immune system by antigen presenting 
cells) is one such indicator of the presence of 
pathogens. In essence, more that one trigger is required 
before potentially damaging action is instigated. 

This could be emulated by using the knowledge gained 
from the comprehensive testing process that follows the 
artificial immune system’s detection of non-self. If no 
errors are found then that detector is probably 
identifying self and should be destroyed. However, care 
should be taken to consider a temporary fault. Again 
taking inspiration from biology, detectors should be 
periodically created, or more than a single instance of 
detection is required before action is taken. 

Much further work is required to investigate the full 
potential of this process. 

5.2 SCALABILITY 
The innate section of the system is not limited by scale. 
The same tests are typically performed whatever the 
size of the device; simply more tests are performed in 
parallel.  

The limit of the scalability of the implementation of the 
negative selection algorithm is the size of the detector 
set required. This is dependent upon the number of bits 
that describe each state and the number of error states 
present. The actual system size is not relevant. If a robot 
controller is once more considered as an example, then 
it would be probable that the outputs of any detectors 
and values of motor controls would contain more bits. 
However, it would be quite possible to reduce these, 
with appropriate logic, to produce simple signals that 
determin features such as if an object was near or that a 
motor was being driven forward. Much of the extra data 
are not necessary for the immune system and can be 

compared to the feature extraction process performed 
by the major histocompatibility complex in biological 
immune systems. However, more complex systems with 
much larger numbers of bits per state can still be easily 
accommodated. It would no longer be appropriate to 
have a complete coverage of all states which would 
complicate the learning algorithm since some decision 
upon which detectors to include would be required. This 
is harder to implement in hardware; however, it would 
not be uncommon for this to be performed in software, 
offline.  

6 CONCLUSIONS 
A demonstration of a multilayer artificial immune 
system implemented within an embryonic array for 
hardware fault tolerance has been simulated. Using a 
negative selection algorithm to monitor the system’s 
state for situations that should not occur reduces the 
number and size of the detector set hence reduces the 
size of the immune system. A non-learning layer could 
then be used to localise the fault. 
The use of an embryonic array provides an ideal process 
to avoid the faults located. The immune system adds 
considerably to the fault tolerance of current 
implementations of embryonic arrays. 

The process currently uses a detector set that is selected 
by hand; however, learning algorithms have been 
identified that could be applied. The system also shows 
promise for scaling to larger systems than that 
demonstrated. 
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Abstract

Attacks against computer networks are becom-
ing more sophisticated, with adversaries using
new attacks or modifying existing attacks. The
research uses two types of multiobjective ap-
proaches, lexicographic and Pareto-based, in an
evolutionary programming algorithm to develop
a new method for detecting such attacks. This
development extends the Computer Defense Im-
mune System, an artificial immune system for
virus and computer intrusion detection. The ap-
proach “vaccinates” the system by evolving anti-
bodies as finite state transducers to detect attacks;
this technique may allow the system to detect at-
tacks with features similar to known attacks. Ini-
tial testing indicates that the algorithm performs
satisfactorily in generating finite state transduc-
ers capable of detecting attacks.

1 Introduction

Attacks, or intrusions, against computer systems and net-
works have become commonplace events. Many intru-
sion detection systems and other tools are available to help
counter the threat of these attacks; however, none of these
tools is perfect, and attackers are continually trying to
evade detection. This paper presents research into detecting
new attacks using a new type of antibody for the Computer
Defense Immune System (CDIS). These antibodies, which
are implemented as finite state transducers, are created us-
ing multiple objectives in an evolutionary programming al-
gorithm.

∗The views expressed in this article are those of the authors
and do not reflect the official policy or position of the United
States Air Force, Department of Defense, or the U.S. Govern-
ment.

The paper is organized as follows. Section 2 briefly dis-
cusses intrusion detection systems, evolutionary program-
ming (EP), and multiobjective evolutionary algorithms
(MOEA). Section 3 discusses other CIS-based work in the
intrusion detection area. The problem addressed in this pa-
per is defined and discussed in Section 4, and Section 5
discusses the algorithms chosen to solve the problem. The
associated tests, results, and analysis are described in Sec-
tion 6, followed by the conclusions.

2 Background

2.1 Intrusion Detection Systems

An intrusion detection system (IDS) helps detect and iden-
tify attacks on a computer system or network. The IDS de-
tects attacks by collecting and analyzing information; this
information may consist of network traffic, data from a par-
ticular host, or both. This research focuses only on the net-
work traffic, so it is a network-based IDS.

An IDS can also be categorized based on its approach for
detecting an attack. The main categories are signature-
based, anomaly-based, and compound or hybrid [1]. A
signature-based system uses knowledge about an attack,
such as the pattern or signature of the attack, to determine
whether an attack is occurring. If the system does not rec-
ognize an attack pattern, then it assumes the data is accept-
able [1]. A main disadvantage to this type of system is that
an attack that is not in the knowledge base is not detected.
The second technique is known as anomaly-based intrusion
detection. This technique uses a model of known good be-
havior and then detects deviations from this model. Any
behavior that does not match the model is assumed to be
an intrusion [1]. Thus, the system can detect new attacks
because it does not rely on a knowledge base of known at-
tack patterns; instead, it relies on a “knowledge base” of
known good behaviors. For this type of system, the model
of known good behavior must be accurate or the system
generates many false detection warnings. The research sys-



tem discussed in this paper is a compound or hybrid of the
two forms, as it uses knowledge about an attack and infor-
mation based on a partial model of known good network
traffic, or “self,” to evolve finite state transducers (FSTs)
as antibodies that can detect the attack and other similar or
related attacks.

Several immune system-based IDSs are discussed in Sec-
tion 3.

2.2 Evolutionary Programming

At a high-level, the standard EAs are all very similar in
that they use a model of the biological process of evolu-
tion as a framework for the algorithm. However, each class
of algorithm has its own representation, reproductive oper-
ators, and selection procedure. These differences explain
why some EAs are better suited to certain problems; the
differences also show that the evolutionary process can be
modeled at many levels and in many ways.

One type of EA is Evolutionary Programming (EP), which
is similar in concept to other EAs but differs in the genera-
tion of offspring from the parent population members. Typ-
ical EP algorithms utilize a mutation operator and generate
one offspring for each parent population member without
the use of recombination. A standard EP algorithm be-
gins by initializing a population of individuals randomly.
This process is meant to generate a wide spread of solu-
tions within the search space. Once the starting population
is generated, all of the members are evaluated based on the
defined fitness function. The fitness value assigned to each
of the population members is necessary for the selection
operators that are utilized in a later step. A mutation opera-
tor is applied to each of the population members to “move”
them throughout the search space. This is the “searching”
process that the EP conducts to find the “best” solution.
This offspring population of solutions are evaluated and a
selection operator is applied over the combined population
to determine which members are fit to become the parent
population for the next generation. The algorithm termi-
nates after some specified stopping criteria [2].

The research algorithm discussed in Section 5 uses evolu-
tionary programming to generate a new type of antibody
for the CDIS.

2.3 Multiobjective Evolutionary Algorithms

A relatively new and increased focus of much research is
in Multiobjective Evolutionary Algorithms (MOEA) [3, 4].
This area of the EA field is currently of interest to many
researchers due to its applicability to real-world problems.
In order to understand the concepts applied in the multi-
objective version of our algorithm, some terminology must
be defined. The process of finding the global maximum

or minimum of a set of functions is referred to as Global
Optimization. In general, this formulation must reflect the
nature of multiobjective problems (MOP) where there may
not be one unique solution but a set of solutions found
through the analysis of associated Pareto Optimality The-
ory. MOPs typically consist of competing objective func-
tions, which may be independent or dependent on each
other. Many times MOPs force the decision maker to make
a choice, which is essentially a tradeoff, of one solution
over another in objective space. MOPs are those prob-
lems where the goal is to optimizen objective functions
simultaneously. This may involve the maximization of all
n functions, the minimization of alln functions or a combi-
nation of maximization and minimization of thesen func-
tions. The formal definition of an MOP is found in [5].

The solution to an MOP is the set of solutions on the Pareto
Front, which represent optimal solutions in the sense that
improving the value in one dimension of the objective func-
tion vector leads to a degradation in at least one other
dimension of the objective function vector. This forces
the decision maker to make a tradeoff decision when pre-
sented with a number of optimal solutions for the MOP at
hand, i.e. the Pareto Front. The decision maker typically
chooses only one of the associated Pareto Optimal solu-
tions,~u ∈ PF∗, as being the acceptable compromise so-
lution, even though all of the Pareto Optimal solutions are
optimal [5].

MOPs typically consist of competing objective functions,
which may be independent or dependent on each other. An
example of this is a company’s quest to purchase a back-
bone for its computer network that provides the greatest
throughput at the least monetary cost. These objectives are
highly dependent on each other as increased cost brings in-
creased throughput and vice-versa. The termobjectiveis
used to refer to the goal of the MOP to be achieved andob-
jective spaceis used to refer to the coordinate space within
which vectors resulting from the MOP evaluation are plot-
ted [5].

There are three main evolutionary approaches taken to
solve MOPs; aggregation approaches, population based
non-Pareto approaches, and Pareto-based approaches [6].
In this paper, we use the latter two approaches. The non-
Pareto based approach implemented in this paper is a lex-
icographic approach [6]. This approach involves the rank
ordering of objectives based on the priority associated with
each. Essentially, each of the fitness functions are applied
sequentially to a given population member.

The other multiobjective approach used here is a Pareto-
based approach that utilizes the concepts of Pareto Domi-
nance in determining the set of solutions [6]. The concept
of Pareto Optimality is integral to determining which mem-
bers dominate each other. A way to determine if one solu-



tion is “better,” or dominates another, is a necessity here as
well as in all problems. Pareto concepts allow for the deter-
mination of a set of optimal solutions in MOPs. Although
single-objective optimization problems may have a unique
optimal solution, MOPs have a possibly uncountable set
of solutions, which when evaluated produce vectors whose
components represent trade-offs in decision space. One key
Pareto concept, Pareto Dominance, is defined mathemati-
cally as [5]:

Definition 1 (Pareto Dominance for Minimization Prob-
lems): A vector~u = (u1, . . . , uk) is said to dominate an-
other vector~v = (v1, . . . , vk) (denoted by~u ¹ ~v) if and
only if u is partially less than v; i.e.,∀i ∈ {1, . . . , k}, ui ≤
vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. 2

Pareto optimal solutions are those solutions within the
search space whose corresponding objective vector com-
ponents cannot be all simultaneously improved. These so-
lutions are also termednon-inferior, admissible, orefficient
solutions, and their corresponding vectors are termednon-
dominated; selecting a vector(s) from this vector set (the
Pareto Front set) implicitly indicates acceptable Pareto op-
timal solutions (genotypes). These solutions may have no
clearly apparent relationship besides their membership in
the Pareto optimal set. It is simply the set of all solutions
whose associated vectors are nondominated; it is stressed
here that these solutions are classified as such based on
their phenotypicalexpression. Their expression (the non-
dominated vectors), when plotted in criterion (phenotype)
space, is known as thePareto Front[5, 7].

3 Related Work

The central model in CDIS is a Computational Immune
System (CIS) or Artificial Immune System (AIS), which
is modeled on the biological immune system [8, 9]. Algo-
rithms based upon a CIS are not exact models of the bi-
ological immune system; instead, they are abstractions of
the immune system ideas applicable to the problem being
solved, and they are implemented in some computer set-
ting. Only concepts required for the particular application
are mapped into the CIS, and natural continuous processes
must necessarily be digitized to work on a digital computer
[10].

CDIS, which is based on the negative-selection model, uses
the concepts of self and non-self. The definitions of self
and non-self are important to the proper functioning of the
CIS, but each particular application has its own method for
defining these concepts [10]. Ideally, the training set rep-
resenting self is designed to represent as nearly as possible
the “normal” activity that takes place at the location pro-
tected by the CIS.

Previous work exists in developing artificial and compu-
tational immune systems, and several research thrusts are
underway in the area of computer defense [11, 12, 13, 14].
These techniques have shown considerable promise in in-
trusion detection. Our work, however, was inspired mainly
by the work of the research groups of Dasgupta [15, 16,
17], Forrest [18, 19, 20, 21], and Lamont [22, 23, 10, 24,
25].

Dasgupta and Gonzalez performed network intrusion de-
tection and developed a GA-based, Classifier-based deci-
sion support tool for assisting in the response to an intru-
sion [16, 17].

Forrest, Hofmeyr, and others have done extensive work
with designing and using CISs for computer security ap-
plications. They have built CISs for host-based ID and
network-based ID. Their host-based IDS defines self as se-
quences of system calls made by privileged programs, so it
detects abnormal, or non-self, system calls [20, 26]. Their
network-based IDS, called LISYS, uses three features for
defining self: the source IP address, the destination IP ad-
dress, and the TCP port. Only TCP SYN packets, which
signal the start of a connection, are monitored by this IDS.
Connections that occur frequently are considered part of
self [19]. Our research differs from this work in several
ways. For instance, CDIS uses 28 features, which include
the three used by LISYS. Also, CDIS examines all TCP,
UDP, and ICMP packets, rather than just monitoring the
TCP SYN packets.

Lamont and others developed a hierarchical, distributed
system called the Computer Virus Immune System (CVIS),
which is a CIS that detects viruses. It was designed to man-
age sets of antibodies as they move through their lifecycles,
to include sharing good antibodies throughout the system,
handling issues like costimulation, alarms, and reporting,
and producing any applicable reactions to old, new, or un-
known attacks [22]. The capability of detecting network-
based intrusions was added [24, 27] and the system was
renamed to CDIS.

4 Problem Description

This section discusses the intrusion detection problem. The
research goal and details of the problem domain are ex-
plained.

4.1 Intrusion Detection Problem Statement

The goal of our research is to develop an innovative type
of antibody for the Computer Defense Immune System
(CDIS); specifically, the new method is intended to de-
tect attacks that are modified versions of existing attacks or
stealthy version of existing attacks. Stealthy attacks may



take place over a long period of time, cover a large number
of targets, or originate from a number of different, coor-
dinated sources. Because these attacks are designed to be
stealthy, they are hard to detect using current intrusion de-
tection systems [24]. Current IDSs can be tuned to detect
some stealthy attacks, but the resulting false alarm, or false
detection, rate usually increases to an unacceptable level.
Thus, new methods for detecting these types of attacks are
needed.

New attacks may be modifications of existing attacks [24],
so an approach for an ID system is to use knowledge of ex-
isting attacks to develop generalized detectors. These gen-
eralized detectors might have the ability to detect unknown
attacks that are based on existing attacks or that are similar
to existing attacks. Developing such generalized detectors
is one aspect of the Intrusion Detection (ID) problem. This
approach maps to the Time Series Prediction problem [28],
in which a sequence of symbols is input and the correct
output symbol must be predicted based on the input sym-
bols. In this mapping, the input symbols are a sequence of
network packets, and the output symbols represent whether
the sequence is assumed to be an attack or not.

4.2 Approach

A network Internet Protocol (IP) packet is made up of
a number of fields, including routing information, packet
function, status flags, and content. Table 1 summarizes
some of the main IP and Transmission Control Protocol
(TCP) fields1 that were found to be useful in earlier ID
work [25]. Although the packet content or payload is an
important part of each packet, it is not used in this research
for two reasons. The main reason is that the size of the
search space increases immensely if this field is used; the
second reason is that existing signature-based detectors can
be used to examine the content field in an efficient manner.

Network traffic consists of a sequence of packets, and an
attack is also a sequence of packets. The packet features
and relationships between features of multiple packets can
be used to determine if a particular sequence of packets is
an attack or not. Thus, the ID problem for this research
focuses on the features shown in Table 1 along with the
packet relationships shown in Table 2 to decide whether a
particular sequence of packets is an attack or not.

The previous discussion motivates a new method for build-
ing antibodies for the CDIS. We call this new process “vac-
cination,” since it is inspired at a high level by vaccina-
tion in a human. “Vaccination” injects existing knowl-
edge about an attack into the CDIS to develop antibod-

1Only TCP packets are examined in this effort; however, other
IP sub-protocols could be examined in a similar manner since the
nature of the algorithm does not specifically exclude any protocol.

ies which detect that attack plus generalized versions of it.
Knowledge about the attack, specifically the relationships
between packets in the attack, is used to develop an attack
signature. Using packet relationships generalizes the sig-
nature because exact details such as the Source IP address
become relationships. This generalized pattern is then “in-
jected” into the EP process to create antibodies, each of
which is a finite state transducer2 (FST) that detects the
generalized pattern.

Developing antibodies using “vaccination” provides the
ability to define patterns of known attacks and variations
or modifications of known attacks. This method might also
detect new attacks that have similar packet relationships as
do existing attacks. In addition, this method allows for dis-
tinguishing between attack sequences and non-attack se-
quences because the FST can be built to accept an attack
sequence while rejecting a non-attack sequence.

The genotype, or internal representation, of a detector in
this scheme is an FST, which represents some regular lan-
guage or pattern. The phenotype, or outward expression, of
the detector is a “Detect” or “Not Detect” signal, which cor-
responds to the FST rejecting or accepting the word, which
represents the network packets that may constitute an at-
tack. The fitness value of a particular FST is dependent
on two factors: whether it detects an attack correctly and
whether it does not detect a non-attack string as an attack.
Because there are multiple factors involved, a multiobjec-
tive approach to solving this problem seems a natural fit;
the particular multiobjective approaches used are discussed
in the next section. These FST-based detectors are used as
antibodies in the CDIS architecture.

Table 1: Packet Features [25]

Field Name Possible Values
IP Fields (All packets)
IP Ident. Number 0-65535
IP Time to live (TTL) 0-255
IP Flags 0-65535
IP Overall Packet Length 0-65535
IP Source Address Valid IP address
IP Dest. Address Valid IP address
TCP-Only Fields (TCP packets only)
TCP Source Port 0-65535
TCP Dest. Port 0-65535
TCP Seq. Num 0-4294967295
TCP Ack Num 0-4294967295
Individual TCP Flags
(PCWR, Echo, Urgent, Ack,
Push, Reset, Syn, Fin)

Boolean

2The term “finite state transducer” as used here is the same as
a Mealy-type finite state machine.



Table 2: Packet Relationships

IP Relationships (for
all Packets)

TCP-Only Relationships

Same-IP-Class-A-Src Same-TCP-Port-Src
Same-IP-Class-B-Src Same-TCP-Port-Dest
Same-IP-Class-C-Src Same-TCP-Flags
Same-IP-Class-D-Src Same-TCP-Seq-Num
Same-IP-Class-A-Dest Same-TCP-Next-Seq-Num
Same-IP-Class-B-Dest Same-TCP-Ack-Number
Same-IP-Class-C-Dest Same-TCP-Size
Same-IP-Class-D-Dest
Same-IP-Flags
Same-Packet-Len
Same-IP-ID-Num
Same-IP-TTL

Figure 1 shows a pedagogical example FST as generated by
this approach. The symbols inside the brackets on the tran-
sitions are the input symbols that cause a transition; these
symbols represent which of the relationships from Table 2
are present between two sequential packets. The symbol
after the colon represents the output symbol: “Detect” or
“Not Detect.”

0

[A,B,C,D,G,H,I,J]:N

1[E]:N

2

[F]:N

[A,G,I]:N

[C,H,J]:D
[B,E]:N
[F]:D

3
[D]:D

[A,J]:D

[F,H,I]:D

[C,G]:N
[B,D]:N

[E]:D

[B,F]:N

[D,E,H]:D

[A,I,J]:N
[C,G]:D

Figure 1: Example FST

5 Algorithm

Standard EP approaches have been modified to use repre-
sentations such as finite state machines (FSMs) and FSTs,
so appropriate reproductive operators have already been
defined. EP has been repeatedly used to solve problems
somewhat similar to the ID problem using only one objec-
tive. L. Fogel used EP to evolve FSMs that were capable
of predicting a number in a series [29], while D. Fogel later
modernized this work and added additional features [30].
Spears used EP to evolve FSMs that were capable of play-
ing a game in which they defended network resources from
an opponent [31]; this work implies that EP can be applied
to network resource problems.

Given an input attack string, each FST produces some out-
put string. A “detect” signal is generated when an FST
outputs the sequence (N,N,...,N,D), where the length of the
sequence is the same as the input string length. Thus, any
output string that is not in the form of the “detect” signal is
considered a non-attack.

Detectors are evolved through the EP process by select-
ing and reproducing the FSTs that best match the input
attack string to the detect sequence. In addition, the al-
gorithm uses some number of self-strings, or known non-
attack strings, which the FSTs must not detect as attacks.
The fitness functions discussed in subsection 5.1.2 are the
embodiment of this process.

The original EP algorithm for this problem used only the
single objective of detecting a given attack string, while the
second version added the ability to use a single self-string
along with the attack string in a lexicographic multiob-
jective fashion [32]. The current implementation provides
the ability to use an arbitrary number of self-strings along
with the attack string in either a lexicographic or Pareto-
based multiobjective optimization. The selection mecha-
nisms used for the current version are described in subsec-
tion 5.1.3.

The algorithm pseudocode is shown in Figure 2.

initialize populationP of sizen

evaluateall population membersp ∈ P
with respect to all fitness functions

while Current Generation< Max Generationsdo
mutate:For eachp ∈ P ,

Conduct Mutation Step 1 with probability 1.0
Conduct Mutation Step 2 with probabilityPMut2

Conduct Mutation Step 3 with probabilityPMut3

evaluate:all population membersc ∈ Child PopulationC
with respect to all fitness functions

select:Next parent populationP using the appropriate
Tournament Selection routine
(Lexicographic or Pareto-based)

od

Figure 2: Pseudocode for Algorithm

5.1 Evolutionary Operators for the Algorithm

Since the algorithm for the current project was inspired by
Fogel’s work [30], it is similar to that EP algorithm, with
differences such as the selection mechanism and the addi-
tion of the ability to use multiple objectives. The particular
evolutionary operators used are discussed in the following
subsections.



5.1.1 Reproduction

Mutation is the only reproductive operator used in this al-
gorithm. It can take one of the following five forms: change
the output symbol, change a state transition, add a state,
delete a state, or change the start state [30]. Some inter-
nal bookkeeping is required so that a state is not deleted
from an FST with only one state or a state is not added to
an FST that already has the maximum number of allowed
states [30].

One of these five mutations is performed on each popula-
tion element during every generation; the specific mutation
is chosen uniformly. A second or third mutation for each
population element is also allowed; the user sets the proba-
bility of occurrence for each of these other mutations.

Recombination is not used in the algorithm, since mutation
is historically the primary reproductive operator used for
EP. However, future versions might incorporate recombina-
tion of some sort to further explore the search space. Since
the search landscape has not been characterized for this
problem, experimentation is required to determine what re-
production operators work well.

5.1.2 Fitness Functions

The first fitness function measures the percentage of FST
output symbols that match the sequence (N,N,...,N,D),
given the input attack string. This is the only fitness func-
tion used in the single-objective version of the algorithm.
This fitness function is similar to that of the Boolean satis-
fiability problem [33]. The input string causes a sequence
of output symbols to be generated by each FST; these sym-
bols are then compared to the expected or desired output
string of (N,N,...,N,D) to give a fitness value of absolute
error in the generated output versus the expected output.

The other fitness functions, used in the multiobjective ver-
sions of the algorithm, measure the percentage of FST out-
put symbols that do not match the sequence (N,N,...,N,D),
given the particular “self” or non-attack string. Note that
the higher the fitness, the fewer symbols match the “de-
tect” sequence, but any fitness value above zero indicates
the FST did not detect the “self” input string as an attack.

5.1.3 Selection

Standard tournament selection with replacement is em-
ployed in all versions of the algorithm. Any number of
competitors is allowed in the tournament, so the selection
pressure can be adjusted as desired.

In the single-objective version of the algorithm, only the
first fitness function is calculated and used for the tourna-
ment process. Similarly, the lexicographic multiobjective
version of the algorithm only uses the first fitness value for

the tournament selection procedure. However, when a FST
has a fitness of 1.0, which means it detects the attack cor-
rectly, the other fitness values are calculated to determine
if the FST detects any of the “self” strings as an attack. If
any of the strings are detected as an attack, then the FST re-
ceives a user-specified penalty on its first fitness score and
then continues into the evolutionary programming process
with the penalty. On the other hand, the Pareto-based mul-
tiobjective version of the algorithm uses all fitness values
for every tournament.

6 Experimental Approach

The testing performed on the algorithm is designed to de-
termine whether the two multiobjective EP algorithms are
capable of finding solutions, or good detectors, over a range
of input attack strings. In this case, a good detector is one
which detects the input string developed from a sequence
of attack packets and generates a “Detect” signal. Thus,
the outputs of the algorithms are the time required to find
a good solution and the number of generations needed to
find that solution. The goal of the testing is to examine the
efficiency of the algorithm rather than the solution effec-
tiveness. Examining solution effectiveness is work that is
currently on-going.

The algorithms are tested using two different test sets. The
first test set consists of five representative input strings,
or benchmark attack packets. These representative strings
are generated randomly, using any of the possible relation-
ships from Table 2. Multiple input string lengths, including
strings much larger than those expected in the ID domain,
are used in these tests. The second set of tests uses a real-
world scan generated by the Queso tool. Each test run also
uses five self strings that are generated by randomly chang-
ing two positions of the input attack string. The number
of positions to change was chosen to keep the self strings
“close” to the original attack string in terms of a distance
metric. Thus, each test uses one attack string and five self
strings, for a total of six fitness functions to be maximized.

6.1 Test Setup and Parameters

This testing is performed on a dedicated Dell Latitude Pen-
tium III 1 GHz computer with 512 MB RAM and the Win-
dows 2000 Professional Edition operating system. The al-
gorithm is implemented in Java 1.3.101 and is compiled to
a native Windows executable using the JOVE 2.0 compiler.
The random number generator is Sean Luke’s Java imple-
mentation of the Mersenne Twister algorithm, which has a
longer period and is faster than the standard Java random
number generator [34].

All of the test runs use the same parameters, other than the
population size and number of generations allowed. These



tests allow a maximum of 15 states for any FSM, and the
probability of a second mutation step is 1.0 and a probabil-
ity of a third mutation step of 0.5. These parameters were
chosen based on previous internal testing to show the fea-
sibility of using the multiobjective approaches. For the first
and second test sets, each experiment was repeated with
population sizes of 100, 250, and 500. For the third test
set, which uses a real attack, all of the tests used a popu-
lation size of 100. All of the tests used ten replications for
each test run, where each replication is allowed to execute
until a solution is found.

6.2 Test Results and Analysis

Table 3 summarizes the average time and number of gen-
erations needed to find a solution FST for the first set of
tests; the name of each test shows the type of algorithm
used. The tests labeled with a “LX” use the lexicographic
multiobjective approach, while the tests marked “PF” use
the the Pareto-based method. Figures 3 through 7 show
boxplots which present a graphical view of the primary test
results for the number of generations and time required to
find a solution and provide some appreciation for the dis-
tribution of the results. The boxplot provides a method for
graphically depicting the distribution of a dataset and com-
paring multiple datasets. The box contains the middle 50%
or the interquartile range (IQR) of the distribution. The un-
marked line inside the box represents the median, while the
line with square symbols represents the average. The lines
extending from the top and bottom of the box contain any
points within 1.5*IQR; any points outside of this range are
shown as outliers [35].

As can be seen in all of the figures, there is a large variance
in the time to execute and the number of generations re-
quired to generate a solution for the LX and PF tests. This
is expected as the process is based on random events, but
the variance and averages in the PF testing are significantly
larger than those noticed in the LX tests. In addition, each
of the Pareto-based tests has one outlier or large value that
skews the average. For example, Figure 6 shows that the
PF-4 test had an outlier that took 1443 generations to find a
solution, while the median value for test PF-4 was only 72
generations.

The box plots also illustrate the fact that the time and gen-
erations required for each set of tests seem to be related.
This observation is expected, since the time to execute one
generation is fairly constant during the course of a test run.

Additionally, we note that the LX tests always converge
to a solution in less time than the PF tests. At an initial
glance this would lead us to state a preference for using
the LX approach, but there is a need to further analyze the
overall quality of the solutions found to determine which

method performs statistically better or if they are equiva-
lent in terms of solution quality. Solution quality, in this
case, refers to the false alarm rate, which measures how
often the solution incorrectly detects some benchmark set
of non-attacks as attacks. The false alarm rate plays a key
factor in determining the usefulness of an intrusion detec-
tion system, so it is important to test. Our conjecture is that
the quicker execution time of the LX tests leads to a larger
false alarm rate, or lower solution quality; solution quality
and this conjecture will be tested in future work.

Table 3: Summary of Test Results

Test
Name

Avg
Time (s)

Time Std
Dev

Avg Gen Gen Std
Dev

LX-1 22.49 12.50 41.10 53.73
PF-1 204.58 362.38 819.00 1537.29

LX-2 33.44 29.88 86.70 129.08
PF-2 187.91 293.72 740.20 1246.76

LX-3 29.37 19.27 71.30 83.09
PF-3 207.17 227.73 832.80 972.08

LX-4 32.51 27.08 81.50 119.47
PF-4 71.30 102.50 246.80 435.51

LX-5 32.68 17.35 80.00 74.71
PF-5 68.04 69.34 224.50 288.54
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Figure 3: Comparison of Lex and Pareto-based for Test 1

The results of the second test set, which use the real-world
Queso scan, are shown in Table 4. Figures 8 and 9 are
boxplots which compare the generations and time required
for the tests. The results for these tests follow the pattern
of the first test set, in that the Lexicographic tests ran for
fewer generations and less time, in general, before finding
a solution. For example, the data in the table shows that
the lexicographic test runs ran an order of magnitude faster
with an order of magnitude less variance than the Pareto-
based tests.
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Figure 6: Comparison of Lex and Pareto-based for Test 4

Table 4: Summary of Test Results for Test Set 2 (Queso)

Test
Type

Avg
Time (s)

Time
Std
Dev

Avg
Gen

Gen
Std
Dev

LX 296.1 224.1 338.4 285.6
PF 5441.3 6962.7 6750.0 8692.7

7 Conclusions

This research presents another step in detecting computer
network intrusions through the use of a new type on anti-

61.0

14.3

32.7

27.9

221.9

14.3

68.0

37.7

202.0

1.0

80.0

59.5

881.0

1.0

224.5

101.0

Gens - PF-5Gens - LX-5Time (s) - PF-5Time (s) - LX-5

0

100

200

300

400

500

600

700

800

900

1000

Figure 7: Comparison of Lex and Pareto-based for Test 5

831

5
338
311

20001

15

6750

826

Pareto Front 
Generations

Lexicographic 
Generations

0

5000

10000

15000

20000

25000

Figure 8: Comparison of Generations for Lexicographic
and Pareto-based Queso Scan Test

688

36
296
269

16075

46

5441

686

Pareto Front 
Time (sec)

Lexicographic 
Time (sec)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Figure 9: Comparison of Time for Lexicographic and
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body for the Computer Defense Immune System. The anti-
bodies are created through “vaccination” using knowledge
about an attack in a multiobjective evolutionary program-
ming algorithm.

The testing shows that the evolutionary programming tech-
nique generates finite state transducers, or Mealy-type fi-
nite state machines, capable of matching or detecting an



input attack string, for the limited string sizes tested. The
lexicographic approach allows the use of the attack and
“self” strings while performing significantly faster than the
Pareto-based approach; however, further testing is required
to determine the solution quality. Solution quality is deter-
mined by the false detection rate and the missed detection
rate, but determining exactly how to measure solution qual-
ity in a fair and consistent manner is an on-going research
question in the ID community. We are attempting to de-
velop an appropriate test bed with “real-world” data so that
the solution quality of the antibodies generated by the “vac-
cination” process can be tested.
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Abstract 
 

Artificial Immune System (AIS) is a novel 
evolutionary paradigm inspired by the biological 
aspects of the immune system.  The human 
immune system has motivated scientists and 
engineers for finding powerful information 
processing algorithms that has solved complex 
engineering tasks.  This paper discusses two 
concepts.   (a) The behavioral management of 
artificial intelligence (AI) namely the intelligent 
multi agent systems, (b) The evolutionary 
computation called the artificial immune system 
that imitates the biological theory called the 
immune system.  The outcome of this research is 
an Artificial Immune System based Intelligent 
Multi Agent Model named AISIMAM that 
solves agent-based applications.  The model is 
applied to a mine detection and diffusion 
problem and the results prove that AISIMAM 
has solved the problem successfully.   

1 Introduction 
The study of biological systems is of interest to scientists 
and engineers as they turn out to be a source of rich 
theories.  They are useful in constructing novel computer 
algorithms to solve complex engineering problems.  
Genetic algorithms derived from the principles of 
genetics, Neural Networks derived from brain - nervous 
systems or neurology (Dasgupta & Attoh-Okine, 1997) 
and cellular engineering based on cell biology are some 
of the biologically motivated evolutionary algorithms that 
perform information processing tasks.  Immunology as a 
study of the immune system (Elgert, 1996) inspired the 
evolution of artificial immune system, which is an area of 
vast research over the last few years.   Artificial immune 
system imitates the natural immune system that has 
sophisticated methodologies and capabilities to build 
computational algorithms that solves engineering 
problems efficiently.  The main goal of the human 
immune system is to protect the internal components of 
the human body by fighting against the foreign elements 
such as the fungi, virus and bacteria (Timmis et al., 1999).  
It is interesting to observe that the process of recognition, 
identification and post processing involve several 

mechanisms such as the pattern recognition, learning, 
communication, adaptation, self-organization, memory 
and distributed control by which the body attains 
immunity (Dasgupta, 1999).   

AIS has made significant contributions to machine 
intelligence.  Applications of AIS are not limited to 
optimization, robotics, neural network approaches, data 
mining and image classification (Hajela & Yoo 1999; 
Ishiguro et al., 1997; Hoffmann 1986; Hunt & Fellows 
1996; Sathyanath & Sahin, 2001).  

In this paper, we concentrate on Multi Agent Systems 
(MAS) and their characteristics.  Multi agents are 
population of agents, (i.e.), more than one agent reacts to 
the change in environment to accomplish the task (Huhns 
& Singh, 1998).  Multi agent systems are based on 
behavior management of several independent agents (M. 
Wooldridge, 1999).   

The objective of the authors was to develop a biological 
based intelligent multi agent architecture.  Multi agent 
systems have some features in common with the immune 
system and provide scope for applying immune system 
methodologies.  Therefore, we have applied artificial 
immune system to multi agent systems for the 
computational intelligence of agents.  The outcome of the 
research is a generic Artificial Immune System based 
Intelligent Multi Agent Model named AISIMAM.  The 
model draws an analogy between the immune system and 
agent methodologies.  It applies the immune system 
principles to the agents to perform a global goal in a 
distributed manner.  AISIMAM is applied to mine 
detection and diffusion problem, a specific application 
experimented to prove the model.  This paper shows that 
AISIMAM solves the mine detection application 
successfully.   

The organization of this paper is as follows.  Section 2 
presents a brief introduction to the immune system.  
Section 3 discusses agent definitions, characteristics of 
multi agents in problem solving.  Section 4 focuses on 
AISIMAM with the mathematical derivations and 
explantions.  Section 5 explains the need for the 
mathematical representation and Section 6  demonstrates 
the application of AISIMAM to a mine detection and 
diffusion problem.  In Section 7 we state the new aspect 
of this research and in Section 8 we state the scope for 



future work.  Section 9 summarizes the conclusion 
derived out of this research work.   

2 The Human Immune System  
The natural immune system is a very complex system 
with several mechanisms for defense against infectious 
agents entering our system.  The external components to 
the immune system are antigens or called the non-self 
cells, as they are foreign substances to the body.  The 
basic components of the immune system are the white 
blood cells, called self-cells or lymphocytes in 
immunological terms.  These specialized cells are 
classified into two types namely the B lymphocytes and T 
lymphocytes. 

• B-lymphocytes are the cells produced by the bone 
marrows 

• T cells develop in bone marrow and mature in 
thymus 

The major responsibility of the B cells is the secretion of 
the receptors called the antibodies (Ab) as a response to 
the antigens that enter the body (Ag) (Hajela & Yoo, 
1999).  The role of these receptors on the surface of the B 
cell is to recognize and bind the antigen. These receptors 
are called idiotopes and paratopes.  Antigens also have 
receptors called epitopes.  The B cells generate antibodies 
of complementary match that recognizes and binds the 
antigen (Castro & Von Zuben, 1999).  Complementary 
match means the generation of an opposite shape or 
structure that fits well with the antigenic epitope to 
recognize the antigen.  The receptors of the B cell change 
their shape according to the shape of the epitope (Timmis 
et al., 1999).  Figure 1 shows the B cell, B cell receptors 
and the epitopes of the antigen.   

 

 

 

 
 
 
 
 
 
 
 

Figure 1: B cells, B cell receptors, antigen, and epitopes. 

2.1 Properties of the Human Immune System 
This section briefly discusses some of the properties of 
the immune system by which the human body attains 
immunity.  The main function of the immune system is to 
kill the antigen.  It is interesting to note that this common 
goal of the system is handled by the individual 
components of the immune system in a distributed 
fashion.  At the same time they also have remarkable 
properties with which they work collectively to perform 

the task.   

The immune system possesses the following properties.   

• Positive and negative selection is a process of 
discrimination of self/non-self cells that prevents 
autoimmuno diseases.  This process filters out the 
cells that would work against the self-cells and only 
the cells that would not bind the self-cells circulate to 
fight against the antigens (Dasgupta, 1999). 

• Clonal selection and expansion is a process of 
selection of useful cells that recognize the antigen 
and reproduce those cells.  This process of cloning 
multiplies the useful cells that are capable of 
recognizing the antigens.  Therefore, the B cells that 
contain the specific receptor that match a particular 
antigen are also multiplied.  In this process, the 
clones suffer hypermutation that alters the shape of 
the receptor also called receptor editing, thus 
increasing the affinity between the clone and the 
specific antigen (Burnet, 1978; Dasgupta, 1999).   

• Immune memory is a result of clonal expansion.  
Some of the cloned cells differentiate into memory 
cells and the rest of the clones become plasma cells.  
B cells remember the shape of the antigen that they 
have fought and recollect when they see the same 
antigen again.  This process defined as secondary 
response, is a feedback of the past event for a current 
input.   This process helps the system to learn and is 
called as reinforcement learning.  Plasma cells 
produce cells with higher affinities (Castro & Von 
Zuben, 1999).   

• Jerne’s idiotropic network deals with the interaction 
of antibodies.  Jerne’s network is a network of B cells 
that communicate the shape of the antigenic epitope 
amongst them through idiotopes and paratopes.  This 
also transforms the receptors according to the 
antigenic pattern.  This shape transformation is an 
important role of information transfer and 
communication between the B cells (Jerne, 1984).   

Figure. 2 show the overall functioning of the immune 
system.  The immune system recognizes the antigens and 
the antigenic patterns are identified.  On identification of 
an antigenic pattern, the B cells communicate the 
information in parallel to each other by means of 
paratopes and idiotopes in the network.  Paratopes match 
with the epitopes of the antigen to recognize the antigen.  
Paratopes also change their shape to strengthen the bond 
between the epitope and the paratope.   However, the 
binding stays only for a short time called the tolerization 
period (Hofmeyer, 2000) within which a number of 
receptors should bind the antigen.  When this process of 
binding within a short period happens, the B cells gets 
activated and performs a set of actions to kill the antigen 
(Hofmeyer, 2000).  On activation, every B cell responds 
by changing the shape of the receptor according to the 
antigenic epitope.  B cells that have higher affinity 
towards the antigen are the ones that recognize the 
antigen.  The useful cells undergo multiplication by clonal 
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expansion and produce high affinity cells or clones.  Since 
the antigen has multiple epitopes and the B cells are 
monospecific (Castro & Von Zuben, 1999) with a single 
type of receptor, B cells work together to kill the antigen 
through immune network.  Part of the clones differentiate 
into plasma cells that create higher affinity cells and the 
rest turn out to be memory cells that remember the 
antigen that was destroyed.  Thus the human system 
attains immunity against the antigens.   

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 2: Representation of the human immune system.     

3 Multi Agent Systems   
Multi agent systems (MAS) deal with the behavior 
management in collection of several independent entities, 
or agents (Wooldridge, 1999).  There are several 
definitions for agents.  We have chosen two definitions of 
agents.   

 
Ø Nwana and Ndumu defined an agent as “a component 

of software and/or hardware which is capable of acting 
in order to accomplish tasks on behalf of its user” 
(Nwana & Ndumu, 1997). 

 

Ø Agents that operate robustly in rapidly changing, 
unpredictable, or open environments, and where there 
is a significant possibility that actions can fail are 
known as intelligent agents or sometimes called 
autonomous agents  (Bond & Gasser, 1998).   

Agents can exist alone or in a society of agents called 
multi agents (MAS).  Multi agents are a population of 
agents, that is, more than one agent can change the 
environment to accomplish the task.  They are distributed 
computational systems (Cho & Tae-Lim, 2001) in which 
each agent in MAS has a list of individual goals or tasks 
that it will perform.  At the same time, MAS has global 

goals that all the agents will strive to achieve where the 
individual efforts of each member agent are put together 
toward reaching the MAS’s global goals (Huhns & Singh, 
1998).  The advantage of the MAS is that the limitations 
of the individual capabilities of the agents are eliminated 
(Abul et al., 2000).   Agents with a fixed goal learn how 
to change the environment to achieve the end goal.  This 
process is called reinforcement learning in agents.  In 
order to achieve an independent and global problem 
solving, the agents behave according to its defined 
characteristics.  Some of the characteristics of agents that 
define their behavior are autonomy, friendliness, 
reasoning, learning, communication and coordination 
mechanisms.  Similarly, there are different environments 
according to which the agents perform the goals.  The 
multi agent environment is usually open, decentralized, 
and contains autonomous agents (Huhns  & Stephens, 
1999).  In summary, agents are entities with well-set 
goals, actions and knowledge in an environment that 
senses, communicates, coordinates, learns and makes 
decisions according to the environment (Cho & Tae-Lim, 
2001).  The following section briefly describes some of 
the characteristics of the agents and different kinds of 
environment  (Mohammed, 2000).     

3.1 Characteristics of the Agents and the 
Environment  

The characteristics of the agents are as follows.   

1. Autonomy in agents is a measure of self-sufficiency.  
The agents that operate on their own are independent 
agents, and if they are restricted by external 
influences then they are called controlled agents.   

2. Sociability is a behavioral measure of an agent to 
think about itself or about others.  An altruistic 
agent acts regardful of others benefits, and is 
unselfish.  In contrast, an egoistic agent acts with 
excessive thoughts of self and is self-loving. 

3. Agents could be friendly and be cooperative or 
compete with each other.  

4. Agents are classified into reactive and deliberative 
according to their level of cognition.  The former 
ones sense and react in a timely manner for an 
environmental change and the latter ones reason out 
before making actions.  

5. Mobility determines if the agents are stationary or 
itinerant.  Stationary agents do not move and 
itinerant agents are mobile.  Other characteristics of 
the agents that deal with the agent’s adaptability, 
rationality and locality can be referred to the 
literature (Mohammed, 2000).     

An agent may have a problem in deciding which of its 
actions it should perform in order to best satisfy its design 
objectives.  The complexity of the decision making 
process can be affected by a number of different 
environmental properties. The following are various 
environments stated by Russell and Norvig. (Russell & 



Norvig, 1995; Mohammed, 2000).   
An accessible environment is one in which the agent can 
obtain complete, accurate, up to date information about 
the environment’s state.  The more accessible an 
environment is, the simpler it is to build agents to operate 
on it. Complex environments like the physical world are 
defined as inaccessible environments.   

There are also other kinds of environments.  Deterministic 
environment and non-deterministic environment deals 
with the certainty of agent’s action.  Episodic and non-
episodic environment deals with the performance of 
agent’s in discrete episodes without any links or linked 
actions with the past and current data respectively.   

4 AISIMAM - Artificial Immune System 
Based Intelligent Multi Agent Model 

The backbone of AISIMAM involves imitating the human 
immune system in terms of features and functions in multi 
agent systems.  The motivation for this research comes 
from the fact that artificial immune system has found 
solutions for several applications.  In the same context 
agent based solutions have also been developed in 
different application domains (Cho & Tae-Lim 2001, 
Abul et al., 2000).  The reason for developing the 
AISIMAM is due to the similarities observed between the 
immune system architecture and the architecture of the 
agents.  The distinct similarities   between the agents and 
the immune system are 

• Both are distributed or decentralized systems  
• Both have multiple autonomous entities  
• Both have individual and global goals  
• Both systems learn from their experience 
• Both are adaptable 
• Both sense the changes in the environment 

and act accordingly 
• Both systems communicate and coordinate  
• Both possess knowledge with which they 

make intelligent decisions.   

Therefore, immune system based multi agent architecture 
is derivable.  The following section describes the multi 
agent systems with necessary comparisons and 
explanations.    

4.1 Comparison of AIS and Multi Agent 
System Parameters  

The model defines the non-self cells (antigens) and 
self-cells (B & T cells) as two agents with different 
characteristics and goals.  Therefore, the two types of 
agents in AISIMAM are 

• Antigens are modeled as non-self agents 
(NAGs) and 

• Lymphocytes or self-cells corresponds to self-
agents (SAGs)  

We define the environment to be a matrix in which both 
the NAGs and the SAGs operate.  The environment can be 

any one of the types of environment explained in section 
3.1 depending on the application.  We assume that there is 
an information vector for each non-self agent.  This could 
represent a disturbance in a process, malfunction or a 
virus in a computer network depending on the application.  
The information vectors correspond to the epitopes of the 
antigen.  Similarly, each self-agent has an information 
vector that defines the self-goals.  The information 
vectors correspond to the receptors of the lymphocytes.  
The information vector can contain a single datum or 
multiple data.  For example, the information could be a 
location information, identification number, text 
information, or all of them depending upon the 
application.  We consider this information to be the 
idiotopes and the paratopes.  However, the model does 
not distinguish between the paratopes and idiotopes.  
Instead, the target will be to perform the end goal with the 
available information by each self-agent.  The end goal 
could be destroying the non-self agent as the antigen is 
killed in the IS, or it can be to identify the best action sets 
of each self-agent to react to the non-self agent’s action 
vector.  This is however problem dependent.   

The information vectors and the characteristics of the 
self and the non-self agents differ from each other.  This 
is similar to the structures of the epitopes of the antigen 
and the paratopes of the lymphocytes.   In other words, 
the agents perform individual actions or goals determined 
by the action generator function and the global goal is the 
coordinated actions of the individual SAGs.  The 
individual action of the agent corresponds to the receptor 
shape change in a B cell and the coordinated actions 
correspond to a group of B cells killing the antigen.   

The SAGs are assumed to have sensory capability to 
identify the NAG within a region called sensory 
neighborhood.  They also possess the capability to 
communicate the NAG information to the other SAGs 
within a region called communication neighborhood.  The 
model assumes that the communication neighborhood is 
greater than the sensory neighborhood.  This is in 
comparison with the capability of the B cells to recognize 
the antigenic pattern within a particular neighborhood.  In 
immune system, the communication circle is analogous to 
communication between B cells connected in the immune 
network (Jerne’s Network).  In other words, every B cell 
communicates the information to another B cell that is 
within the communication neighborhood in the immune 
network.   

The agent model describes five stages of processing 
namely Pattern recognition, Binding process, Activation 
process, Post activation process and Post processing.   

In pattern recognition, SAGs recognize the presence of 
the antigen by the stimulation function and identifies the 
NAGs by an identifier function.  The model defines an 
affinity function that calculates an affinity value between 
the actions of the self and the non-self agents.  This 
process is defined as binding process.  In the immune 
system, the affinity is proportional to the binding between 
the B cell receptors and the epitopes.  The affinity 
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calculation in the agents is similar to the affinity between 
the epitope of the antigen and the receptor of the 
antibody.  However, the binding is not modeled separately 
in AISIMAM.  For instance, the affinity function could be 
a distance metric such as the Euclidean distance.   

In order to imitate the IS, in the activation process we 
choose the affinity values that are greater then a set 
activation threshold.  Activation threshold will help the 
agents to find out the higher affinity actions called mature 
actions that are closer to the desired goal.  Here, we 
define the binding period as the time taken by a number 
of agents to bind the NAG.  The model defines this time 
as a sum of recognition time  and grouping time .  
Recognition time is the time taken by every agent to 
recognize the NAG and is the same for every agent.  The 
grouping time is the time taken by the other agents to 
react to the identified NAG and this time differs from 
agent to agent.   

The post activation process involves cloning.  Here, the 
agents are reproduced with the mature action.  A part of 
these cloned agents differentiate into memory agents 
containing the matured action obtained as a result of a 
particular NAG.  The rest of the clones become plasma 
agents that create higher affinity actions through the 
action generator function.  Post processing involves the 
primary and secondary response of immune memory, 
which is also included in the model.  Hypermutation in 
agents is the process of generating new actions exists 
conceptually.  Once the end goal is reached, memory 
agents remember the actions performed to reach the goal.   

All the self-agents work in an agent network  similar to 
Jerne’s network. The process of information transfer and 
communication between the agents is an analogy of the 
agent network to the immune network.  The nature of the 
agent network is application dependent.  Suppression in 
the agent network is determined by the suppression 
function.  In immune system, even in the absence of the 
antigenic stimulus, the B cells perform suppression.  In 
AISIMAM, in the absence of antigenic stimulus 
suppression is performed.  The overall representation of 
the AISIMAM is shown in Figure 3.   

 

4.2 AISIMAM - Operational Scheme and the 
Mathematical Representation 

This section deals with the notations used in the model, 
followed by the definitions of the parameters, and the 
algorithm. 

4.2.1 Parameter Definitions 

In the model, we define the agents namely the self  
agents (SAGs) and represent them by iS , where i = 1, 
2…N and the non-self agents (NAGs) as jN where j = 
1,2...M. We define the problem domain or the 
environment E by j iNSE ji ,     ∀∪= .  For all Si ∋ E, 
there exists an information vector of n elements given by 

[ ]n
i b, bbB …= 21 .  For all Nj ∋ E, there exists an 

information vector of m elements given by 
]...[  2,1 m

j aaaA = .  Define Ta   to be the activation 
threshold. 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 

 
Figure 3: Representation of AISIMAM – An AIS based 

Intelligent Multi Agent Model 

4.2.2 AISIMAM - Algorithm 

Initialize all the parameters defined as above 

For each Si 

• Calculate ),(1,
ij

ij BAfM =  where Bi is the 
information vector of iS , and A j is the information 
vector ∀ jN  in the sensory neighborhood Ns 

 

sNin
jA

jAiBjAf  
an   if  0

 no if    0
),(1







∃≠
=  

• If  ( )0, ≠ijM  

o The information about the NAG is transmitted to 
the other SAGs through the immune network  

o For each NAG Nj, within the Ns, the sensory circle 
where j = 1, 2…e, and e≤ M 

1. Pattern Recognition and Identification 

Identify the NAG using the identifier function I   that is 
given by  

      )(2 jj AfI =  

Generate possible new actions i
k

i
j UU ........  using 

action generator function that is a function of Ij  

     )(3 j
i
j IfU =  where kj ....1=  

 

2. Binding Process 

Find the affinity for all possible vectors i
jU  by the 

affinity function  



    ...k  j UfAf j
ii

j 1 ),(4 =∀=  

3. Activation Process 

Choose mature actions whose affinity is greater than 
activation threshold Ta and store in the action set Y 

 { } ......p, j aTi
jAfi

jUY 21  where| =>=   

• The activation of the mature actions within the binding 
period tb  is given by 

[ ])()(*),(5 bttutubtYfi
jU −−=   

where u(t) is the unit sep response 





=
∃≠ activation   if  0

activation no if    0
),(5 btYf  

If a best action needs to be chosen, the threshold 
should be chosen so high that p = 1. 

4. Post activation processing - Cloning 

If  ( )0≠i
jU  

In this case, agents are reproduced with mature 
action set Y in SAGs. iS  is cloned with mature 
action set Y to generate q SAGs. 

cS qN.... Nc ++= ,,1where     

End If 

5. Post processing - Memory  

Choose s number of memory agents a
zM  from the 

cloned agents 

If  ( )0≠i
jU  

ca
z SM =  

where qssN Nz <++=   where,,,1 L  

• Memory Response 

The efficiency of the primary and secondary 
responses are given by 

 ηp = f6 [Np, Tp] 

ηs = f7 [Ns, Ts]  

where Tp >>Ts and Np << Ns  and Np and Ns are the 
number of actions required to kill the NAG in the 
primary response.  Tp & Ts are the time taken for the 
primary and secondary responses respectively.  The 
efficiency of the primary and secondary responses is 
ηp and ηs respectively.   

• Plasma Response 

Rest of the clones are defined as plasma agents zS  
where qNs Nz +++= ,,.........1 .  Here q-s 
agents are added into the system.  

End If  

End For 

Else perform suppression by the suppression function 

                     ),(8,
ji

ji BBfP = where i, j are of Si and Sj                   

End If  

 End For  

5 Need for a Mathematical Representation 
The goal of AISIMAM is to provide a mathematical 
representation for the operation of immune system.  
Several immune modeling such as the immune network 
model (Castro & Von Zuben, 2001), negative selection 
algorithm (Dasgupta), mathematical modeling of the 
clonal selection (Chowdary, 1999) and immune memory 
(Smith et al., 1996) agent based immune systems (Mori, 
Tsukiyama and Fukuda 1997, Dasgupta 1998) exist in the 
literature.  AISIMAM differs from the other models in the 
context of mathematical functions defined for the entire 
process.  In order to prove the usefulness of the 
representation, two applications namely bar code 
recognition and mine detection are compared.   

In the case of barcode recognition, assume that the non-
self agents jN  or antigens are the characters to be 
recognized.  The B cells are the software agents iS  whose 
information vector contains the corresponding ASCII 
characters.  Each agent has a defined group of characters.    
Environment E has the information about the recognized 
and the unrecognized characters.  If the agent can 
recognize the character, recognition is achieved.  
Otherwise the agents can communicate through the 
environment to find if the unrecognized character falls 
into its category.  The stimulus M is defined by the 
recognition of the start bit pattern of the barcode that 
defines the start of the recognit ion process.  The identifier 
function I is a character recognition function.  The affinity 
function Af can be defined as the matching function 
between the recognized character and the character in the 
agent’s 

 information vector.  Affinity threshold Ta can be set to 1 
that chooses the best match.  In this case cloning is not 
utilized.  Thus the agents are not reproduced.  In this 
application, sensory and communication neighborhood is 
zero, since the agents are not in a space.     

In the case of mine detection application, non-self agents 
are the mines and the mobile robots are the self-agents.  In 
this case, both are hardware agents.  The sensory and 
communication neighborhoods are defined by the distance 
metric.  The identifier function I becomes finding the 
mine by the identifier and the location of the mine.  The 
affinity function Af is the Euclidean distance.  Affinity 
threshold T a  can be set to a predefined value.  Mine 
detection application is explained in detail in the 
following paragraphs.   

As can be seen above, the model can be applied to 
different applications by changing the functions.  
Therefore, the generalized functions provide a global 
representation for several agent based applications. 

6 Application of AISIMAM to a Mine 
Detection Problem 

To experimentally verify the architecture, AISIMAM is 
applied to a specific problem.  The problem implemented 
is mine detection and diffusion.  The experiment is 



simulated in MATLAB.  The following section discusses 
the parameters of AISIMAM used for this specific 
application and the pseudo code for the problem.   

6.1  Parameter Definitions  
The following section briefly describes the characteristics 
of NAGs, SAGs and environment for mine detection.   

6.1.1 NAGs and its characteristics 

The antigen or the Nonself agent (NAG) is the mine. 
Define the area to be explored for detecting the mine.  
This defines the boundary of the environment for the 
agents to detect the mine.  Mines are deployed in a 
uniform distribution within the environment.  The initial 
locations correspond to the epitope or the receptor of the 
antigen.  Characteristics of the mines are stationary, 
unfriendly and competitive.  Circling the mine is defined 
as diffusing the mine. 

6.1.2 SAGs and its characteristics  

Define the B cells to be the self-agents (SAGs).  Deploy 
all the SAGs in a uniform distribution within the 
environment. The initial locations of the SAGs correspond 
to the receptors of the B cells.  Characteristics of the SAGs 
are itinerant, independent, cooperative, altruistic and 
deliberative.   

In mine detection application, it is assumed that the 
environment is accessible and the self-agents get updated 
information about the environment.    

Assume that all the SAGs have the capability to sense the 
mine and communicate between the agents within the 
sensory and communication circles respectively.  We 
have used Euclidean distance measure for both the cases.  
Every SAG (robot) recognizes the mine and identifies the 
location of the mine within this sensory circle.  On 
identification of the NAG (mine) every SAG 
communicates to the other SAGs in a Jerne’s network. For 
this problem, we have assumed Jerne’s network as a 
broadcast network.  It is also assumed that the 
communication between the SAGs is larger than the 
capacity of every SAG to sense the NAG.   

6.1.3 Pseudo Code For The Mine Detection 
Problem 

The pseudo code for the mine detection problem is as 
follows. 

1. Initialize the SAGs and NAGs in a uniform 
distribution.  

2.     diff_use = 0;  (Initially there is no diffusion) 

2.1 While (diff_use ≠ number of_mines, Ni ) 

2.2  For each SAG Sj, do the following 

If (there is a mine within the sensory circle) 

a) Identify the location of the mine 

b) Inform the locations of the mines to the other 
self-agents within the communication circle. 
This corresponds to the communication through 
the immune network. 

c) SAG generates new actions that are eight 
different new locations to move 

d) Find out the distance (affinity function) between 
these locations and mine locations.  The Affinity 
is calculated by the Euclidean distance between 
the generated locations and the robot location. 

e) Choose the distance that is lesser than an affinity 
threshold and move to that location. 

f) If  (this location is the mine location) 

   If (there are 4 SAGs around the mine) 

Diffuse the mines, update the number of 
mines diffused, (diff_use = diff_use + 1); 

If (diff_use == number of mines),  

Break; End If; End While 

STOP 

Else wait until there are four SAGs around 
the mine; End If 

 Else do step 2.2. c.  End If 

Else If (there are any self-agents within the          
Communication circle)  

• If (non-self information is available) repeat from 
step 2.2.  End If 

 Else Make random movements from the current 
location, since there is no NAG information from other 
self-agents and no mine detected within the sensory 
circle 

End If; End For; End While; STOP  

Memory is not used in this problem since there is no 
usefulness in remembering the location of the mine once 
it is detected and diffused.   

6.1.4 Simulation Results 

We assume that a priori knowledge of the minefield 
intensity is known in the given environment.  In the 
simulation, this means that the number of mines in the 
given environment is known.  Therefore known number 
of mines is deployed in a uniformly distributed manner in 
the given area.  This creates the minefield.  We also 
deploy a known number of mobile robots in a uniformly 
distributed manner in the environment.  The simulation 
differentiates the mobile robot and the mine by using a ‘+’ 
for a mine and a ‘o’ for robots for representation while      
the code identifies a mine by a ‘0’ and the robot by a ‘1’.  
The information vector for the mine and the robots 
contain the initially deployed location information along 
with the identifier.  Table 1 shows an example of the mine 
and the robot information vector.  The simulation also 
requires setting the sensory circle of the robot and the 



communication circle.  We have assumed that the 
communication circle is greater than the sensory circle.    

 
Table 1: An Example of Information Vector of Mines and 

Robots 
 

 X coordinate Y coordinate  Identifier 

Mine 4 
3 
 

5 
7 
 

0 
0 

Robot 2 3 1 

The simulation is verified for the following variations.  

• By increasing the sensory range from 3 to 9 units of 
distance measure.   

• The communication circle was varied between 5 and 
11 units of distance measure.   

• Changing the environments area to 10 x10 and 32 x 
32 rectangular grids.   

Here, the environment is accessible where each SAG has 
the information about the mines and the other SAGs in the 
sensory and communication neighborhood.  That is, on 
identification of the mine, SAGs within the 
communication circle exchange about the number of 
mines detected and their respective locations through the 
agent broadcast network. A sample environment vector is 
shown in Table 2.  It can be seen from Table 2 that the 
robot 1 has the information about mine 1 that is accessible 
to robot 2 if it is within the communication circle because 
robot 2 checks for the information available with robot 1 
since it has not identified any mines.  However, the 
environment becomes inaccessible on the assumption that 
the environment is not updated or when the 
communication circle is zero (c_cir = 0).  It is useful to 
make the environment accessible in practice because, the 
mobile robots for mine detection can be provided with the 
capability to communicate. 

 
Table 2: An Example of the Environment Vector 

 

 
Index 

Coordinat
es 

(Initial) 
 X               
Y  

Identifier No of 
mines 

detected 

Detected 
Mine 

locations 
 

Mines 1 
           2 

3 
4 

7 
5 

0 
0 

0 
0 

-- 
-- 

 Robots 1 
              2 

2 
5 

4 
2 

1 
1 

1 
0 

4,5 
-- 

 
The experiment is repeated for different populations of 

mines and robots.  The typical range for the mines 
deployed are varied between 10 and 70 and accordingly 
and the robots are varied between 40 and 100.  Figures 4 
and 5 show the simulation with mines and robots with 
their initial locations and the four agents surrounding the 
mine.  The following results prove that AISIMAM is able 

to solve the mine detection problem successfully.  
       

               
 

Figure 4: The locations of mines and robots after 2 
iterations 

               
 

Figure 5: Four robots have circled one mine after three 
iterations 

6.1.5 Observations 

The following cases are studied and results are shown 
below.  
a) For an increase in the population of mines and increase 

in population of robots the computational complexity in 
terms of rate of convergence (or the number of steps 
needed for the algorithm to converge) is studied.  For 
an environment size of 32x32 and a constant sensory 
and communication circles, the individual rates of 
convergence are shown in Figures 6 and 8 and the 
average convergence rate can be seen in Figures 7 and 
9.   In Figures 6 to 9, x-axis is the number of mines, y-
axis is the number of agents and z-axis is the number of 
iterations.   

b) For an increase in the sensory region and 
communication region the computational time in terms 
of rate of convergence is studied. Increasing the sensory 
and communication circles reduce the required the 
number of steps for the algorithm to converge.  This is 
due to the fact that robots senses more area and can 
communicate with more robots and check if others have 
mine information if they cannot find any.  

The experiment is repeated for the same number of mines 
and number of robots with a step increase in the sensory 
and communication circles in the following combinational 
pairs (3,5), (5,7), (7,9) and (9,11).  The number of 
iterations for a chosen value of robots and mines can be 
seen in Figures 6 and 8.  The Figures 7and 9 shows the 
average number of iterations for sensory and 



communication circles to be (5,7) and (7,9).  However it 
was observed that increasing the sensory and 
communication circle reduces the average number of 
iterations for the algorithm to converge.    

                 
 

Figure 6: The rate of convergence for variation in mines 
and agents for 32x32, sen_c = 5, c_cir = 7 

             
 

Figure 7: The average rate of convergence for variation in 
mines and agents for 32 x 32, sen_c =5, c_cir = 7 

   
 

Figure 8: The rate of convergence for variation in mines 
and agents for 32 x 32, sen_c = 7, c_cir = 9 

7 New Aspect of the Work 
Literature survey shows that there are several applications 
on Artificial Immune Systems and Multi Agent Systems 
independently.  Some of the recent work also addresses 
some of the properties of AIS to agent systems to solve a 
particular task (K. Mori, M. Tsukiyama and M. Fukuda 
1997, D. Dasgupta 1998).  AISIMAM is a generic model 
that provides to define the SAGS and NAGS in terms of 
functions to be determined by the applications.  Individual 
goals and a global goal for the agents can also be defined 
by the functions.  The model is flexible and unique 

because the parameters of the model can be changed by 
the formulated functions depending on the application.  

 

             
 

Figure 9: The average rate of convergence for variation in 
mines and agents for 32x32, sen_c =7, c_cir = 9 

8 Future Work 
A mathematical representation of the immune network is 
expected to be added in the future.  Further conclusions 
can be arrived from the following additions.  In the mine 
detection application,  

a) We have assumed that the robots themselves do not get 
destroyed in the detection and diffusion process.   But 
in practice, a robot can fall on the mine during 
deployment.  So in future, the algorithm can be 
modified to analyze the case of robot falling on the 
robot while deployment and call that failure rate 
analysis.   

b) Another assumption is that the NAGs or the mines in 
this application are static.  This is true because in 
practice all the mines are static.  In future applications, 
the NAGs could also be dynamic and hence the 
experiment can be repeated for the agent behavior.   

c) Also, in the mine detection application, the memory is 
not used.  This is because, there is usefulness in 
remembering either the location information of the 
mine or the type of mine itself.  In future, we can 
redefine the application more specific by employing 
different functions for different kinds of mine.  In this 
process, memory will be helpful in remembering the 
information about the type of mine that could be useful 
rather than the location information. 

9 Conclusion 
This research draws a generic model named AISIMAM 
based on artificial immune system applicable to 
intelligent multi agents.  An application for the model is 
simulated.  The mine detection and diffusion problem is 
experimented and the results show that AISIMAM is 
successful.  The motivation for this application is that in 
future the mine detection can be performed efficiently by 
deploying mobile robots that have enough intelligence, 
communication and coordination to detect and diffuse the 
mines.  To verify the generality of the model, more 



applications will be simulated and verified in the future.  
This research is conducted with the support of Gleason 
R&D Funds in Multi-agent Bio-Robotics Lab (MABL) at 
Rochester Institute of Technology. 
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Abstract

This paper presents results of application of our
immunocomputing method to immune diagnostic
arrays. The method detects bound complexes of
immunoglobulin G (IgG) with protein G (pG),
and recognizes the concentration of IgG as the
result of IgG-pG interactions at each location of
a bioarray. This model system has been
developed as a prototype of a protein biochip for
immunoassay-based diagnostics, where bioarray
is a macro-variant of the biochip microarray,
while the software is a core of the biochip reader
and controller.

1 INTRODUCTION
By using optical densitometry or CCD (charge-coupled
device) imaging system, it is possible to compare the
differential protein levels among multiple samples.
However, large-scale high-throughput methods of
molecular immunology require rather complicated
information processing to collect, analyze and interpret
data. The problem becomes especially important for
modern  biochip technologies.

Any device which incorporates bioreceptors, such as
antibodies, enzymes, cellular components of living
systems etc., is referred to as a biosensor. Moreover, any
biosensor that involves the use of a microchip system for
detection is considered a biochip (Stokes et al., 2001).

Biochips (biological microchips or microarray technique)
as the development and application of the arrays of
immobilized biological compounds have become a
significant trend in modern biology, biotechnology and
medicine. The main advantage of biochips over
conventional analytical devices is the possibility of
massive parallel analysis. Biochips – really new and
highly innovative products – are biological equivalents
for computer microchips and they appeared as a result of
application of the ideas of miniaturization, integration and

parallel processing of information from microelectronics,
where they were born, to biological processes. The chip
principle has now become the dominating theme for a
number of new  proteomics technologies. Based on this
principle, two main systems are currently used for
analysis of multiple protein expression: two-dimensional
polyacrylamide gel electrophoresis coupled with mass
spectrometry and surface-enhanced laser desorption and
ionization (Huang, 2002). However, the requirement of
sophisticated devices often limits accessibility of these
systems. At the same time, numerous proteins can be
detected simultaneously and specifically using more
simple immunoassay-based protein array systems. This
approach (immunoassay) can be used to detect multiple
proteins, including antibodies and antigens, toxins etc.
Immunoassay-based microarray technologies can be
particularly useful in accurately measuring the difference
in individual protein levels between several samples,
which is sometimes very important in disease monitoring.

On the other hand, we have developed a pattern
recognition method based on our immunocomputing
approach (Tarakanov, Skormin and Sokolova, 2002).
Inspired by principles of antibody-antigen recognition in
the natural immune system, our method solve problems of
distinguishing background ("self") from patterns ("non-
self") and processing the patterns. We have developed a
rigorous mathematical basis and a software
implementation of the method. The method has been
applied to compute ecological atlases,  predict danger of
the plague infection, detect intrusions in computer
networks, etc. (Kuznetsov et al., 1999; Tarakanov et al.,
2000; Tarakanov and Skormin, 2002). In the present
paper we apply our method to immune diagnostic arrays.
We detect bound complexes of IgG with pG, and
recognize the concentration of IgG as the result of IgG-
pG interactions at each location of a bioarray. This model
system has been developed as a prototype of a protein
biochip for immunoassay-based diagnostics, where
bioarray is a macro-variant of the biochip microarray,
while the software is a core of the biochip reader and
controller.



2 BIOARRAYS

2.1 GENERAL APPROACH
In this work the sampling platform is a nitrocellulose
membrane exposed to different concentrations of IgG and
subsequently analyzed using a direct immunoassay
involving pG labeled by horseradish peroxidase (pG-
HRP) or carbon particles (pG-CP).

To quantify the exact amount of proteins, multiple
standard curves can be generated and according to them
the exact amount of individual proteins can be detected.
We used the twofold dilution standard curve as an
example (model) for biological experiments.

The ability of the surface proteins of Streptococci, pG
among them, to interact with human and animal plasma
and serum proteins is well known and has gained a
prominent place in immunochemistry. Immunoglobulins
interact with the surface receptor of the microorganism by
means of their Fc-fragment, that allows to use widely the
bacterial pG in all clinical assays when it is necessary to
detect serum antibodies. We use pG-IgG interacting
system to obtain the protein arrays in the direct
immunoassay.

2.2 MATERIALS AND METHODS
Nitrocellulose membranes for protein arrays ("dot blots"),
pore size 0,45 µm, have been purchased from Millipore
Corp., USA, Filter type HA, Cat.No HAHY 304 FO.

Human IgG (Fractions II, III) has been purchased from
Sigma, USA.

Recombinant pG of group G Streprococci, strain G148,
has been cloned at the Institute of Experimental Medicine,
Russian Academy of Medical Sciences, St-Petersburg,
Russia (Gupalova and Totolian, 1996). The
corresponding HRP-conjugated pG  (pG-HRP) has been
prepared by periodate method (Frimel, 1987).

The detection reagent of recombinant pG covalently
conjugated to particles of colloidal carbon (pG-CP)
ranging from 150 to 200 nm in size, has been kindly
gifted by Dr. M.B. Raev, Institute of Ecology and
Genetics of Microorganisms, Russian Academy of
Sciences, Perm, Russia (Plaksin et al., 1996).

2.3 PREPARATION OF BIOARRAYS

2.3.1 Spot
We use nitrocellulose membranes to spot the twofold
dilutions of IgG.

To spot capture proteins IgG onto membranes, we place
the nitrocellulose strips on the top of white light box. We
load manually 5 µl of solution of IgG (the initial
concentration of IgG is 250 µg/ml) onto a single spot by a
10-µl pipettors.

2.3.2 Immunoassay
We load human IgG onto membranes as described above.

We block membranes with "blotto" solution (1% non-fat
milk, pH 7,2) for 1 hour at room temperature. "Blotto" is
used as washing and dilution solution at all steps, if
necessary.

In case of usage pG-CP as the detection reagent, the 5-10
minutes detection procedure with conjugate follows after
the 20-30  minutes incubation period.

The results are visualized as black dots directly on a white
solid phase surface of nitrocellulose membrane. There are
no additional steps.

In case of usage of pG-HRP conjugate, we incubate
membranes for 1 hour at room temperature and use α-
naphthol as the substrate for HRP. We dilute 6 mg of α-
naphthol in 2 ml of methanol; we add 8 ml of 0.01 M Tris
pH 7.5/0.5 M NaCl and 6 µl of 30 % hydrogen peroxide
to the final solution.

2.3.3 Solid-phase immunoassay
In this study we have implemented a direct immunoassay
method using pG-labeled probes. We use nitrocellulose
membranes (strips) for the assays. We spot different
concentrations of human IgG onto membranes as the
model of "calibration curve": {250, 125,  62.5, 31.2, 15.6,
7.8, 3.9, 1.95, 0.99, 0.5} µg/ml.

We dry the membranes at room temperature for 10
minutes and then place them in blocking solution of
"blotto" to block any unoccupied binding sites on the
membrane surface for 1 hour at room temperature. This
step is followed by removal of the blocking solution. We
prepare dilutions of pG-HRP or pG-CP (usual dilutions
are 1:2000 and 1:25) in the same buffer as for the
blocking step. After incubation of the membranes in the
conjugate solution for 0,5-1,0 h at room temperature, we
remove the solution and wash the membranes 5 times
using 0,5 % Tween 20 in PBS.

When the pG-CP conjugate is used in the assay, there are
no additional steps and the results of the assay are
visualized as black dots directly on the nitrocellulose
surface. The obtained results are stable and require no
specific fixation or termination procedures.

When the pG-HRP conjugate is used in the assay, there is
an additional step of the enzyme-substrate reaction with
α-naphthol, as described above (see Section 2.3.2.).

2.3.4 Experimental results
We obtain bioarray as a nitrocellulose strip with the rows
and columns of IgG. Figure 1 shows an example of the
bioarray. Typical size of the bioarray is 15×70 mm
approximately. We have prepared about 50 of such
bioarrays.



Figure 1: Bioarray of pG-IgG

3 SOFTWARE

3.1 COMPUTER INPUT
We scan bioarrays by a custom scanner HP ScanJet
5300C to make them available for processing on any
usual Personal Computer (PC). The resolution is 150 dpi
in color format. Conventional files in the bit map pixel
format (bmp) are obtained. We assign names to these files
according to the following format:

YearMonthDateGroupNumber,

where Group = {01, 02}, Group = 01 corresponds to pG-
HRP, and Group = 02 corresponds to pG-CP conjugates.
For example, the name of the bioarray's file in Figure 1 is
as follows:

0205140101.bmp,

which means May 14, 2002, pG-HRP conjugate, bioarray
#01.

A database prototype has been developed as a file in the
Exel format (xls). The records of this database correspond
to the bioarrays, where file name is a key to the record.
Another data correspond to conditions of  bio-membranes
experiments, and results of image recognition.

3.2 IMMUNOCHIP EMULATOR
Software for image recognition by immunocomputing has
been developed as a version of software emulator of an
immunochip (Tarakanov and Dasgupta, 2002). The
emulator is being developed under the following standard
software: MS Windows'2000 operating system, MS
Visual C++ 6.0 Developer Studio, and OpenGL graphic
tools. Figure 2 shows a screenshot of the emulator.

The emulator works as follows.

User opens file with an image of bioarray (e.g., as in
Figure 1). The image appears in the left-hand screen of
the emulator.

User clicks the "Run Processing" button on the emulator
toolbar. The emulator recognizes the locations (spots) of
the immune reactions by distinguishing them from the
background of the image. Such spots are outlined by the
emulator (see squares in left-hand screen of Figure 2).

Then each spot is processed by the emulator to recognize
the concentration of IgG. The corresponding
concentrations are shown as the up-centered table in
Figure 2.

Right-hand screen graphics of the emulator in Figure 2
represent inner parameters of the method. They are used
by developers to control image recognition processes, as
described below.

Figure 2: Immunocomputing Software

3.3 MATHEMATICAL BASIS
Bioarray image is represented initially as a matrix MA of
dimension nL×nR. According to the (bmp) format, we
form this matrix as a matrix of real values:

mij = (rij+gij+bij)/3,

MA = {mij}, 0 ≤ mij≤ 255, i = 1,..., nL , j = 1,..., nR .

where r, g and b correspond to the red, green and blue
values of the pixel.

According to the "key and lock" principle of antibody-
antigen recognizing in the immune system, we consider
the matrix MA as a collection of "antigens-locks". To
compute "antibodies-keys", we form an inverse matrix M
of the same dimension:

M = 255− MA .

We represent this matrix in the following form:

M ≅ sLRT,  LTL = 1, RTR = 1,                (1)

where s is first singular value; L and R are first left and
right singular vectors of the matrix M.

It is known (see e.g., Tarakanov and Skormin, 2002) that
representation (1) corresponds to the first term of the so-
called Singular Value Decomposition (SVD). Such SVD
exists for any rectangular matrix over the field of real
values and can be computed by the following iterative
scheme:



L(1) = [ 1, ..., 1 ]T , L(1) = L(1) /| L(1)| ,

[R(k)]T = [L(k−1)]TM,  R(k) = R(k) /| R(k)| ,

L(k) = MR(k), L(k) = L(k) /| L(k)| ,

s(k) = [L(k)]TMR(k),

k = 2,..., until | s(k) − s(k−1) | < ε .

According to (Horn and Johnson, 1986), such a scheme
converges to the maximal singular value and singular
vectors in general case of the matrix M.

First singular value s and corresponding singular vectors
L, R of the matrix M possess the following property:

s = LTMR , s ≥ PTMQ,  ∀P,Q: PTP=1, QTQ=1 .

In other words, representation (1) of any real matrix M is
mathematically optimal (in the sense of the minimal least
square error), if, and only if, s is the first singular value,
and L, R are the corresponding singular vectors of the
matrix.

3.4 RECOGNITION ALGORITHMS
According to (Tarakanov and Skormin, 2002), unit
vectors L, R can be considered as a mathematical model
of "antibodies-probes", while w=−s is their binding
energy within so-called Formal Immune Network (FIN).
By such a way, using our immunocomputing approach,
we reduce two-dimensional input "antigen" MA to two
one-dimensional "antibodies" L, R. These "antibodies"
represent a kind of "internal image" of the "antigen",
generated by FIN. Figure 2 shows the profiles of such
"antibodies" in the right-hand screen.

Using decomposition (1), we reduce the problem of
detecting spots in the input image MA (left-hand screen in
Figure 2) to more simple task of finding local minima of
one-dimensional functions L, R (right-hand screen in
Figure 2). The emulator determines these minima as
"paratopes" (antigen binding parts of antibody), according
to an analogy of "antigen processing" by the natural
immune system.

For example, designate vector L in the k step of
processing as L(k), k=1,...,km , where km is a number of
local minimum. Hence, initially L(1)=L.

Determine global minimum of L(1) and sequentially cut
off the corresponding local "paratope" LP(1) by small
pieces, until a "self" level of the background be obtained.
Figure 3 illustrates such processing of the right-hand
"paratope".

By such a way, the emulator computes roughly a position
of the center and the bounds of the second row of the
spots of the bioarray (as shown in left-hand screen of
Figure 2).

Then the emulator cuts off the found "paratope" and
repeat processing on another step, until all "paratopes" be
found:

L(k) = L(k−1) − LP(k−1),  k = 2,...,km .

Figure 3: Processing of the "Paratope"

Such "paratopes" of the left singular vector L correspond
to the rows of the bioarray. For example, if vector L has
two "paratopes" (as in Figure 3 and in the upper graphics
of right-hand screen in Figure 2), then the bioarray has
two rows of spots (as in left-hand screen of Figure 2).

Analogously, the emulator finds all "paratopes" of the
right singular vector R. They correspond to the columns
of spots of the bioarray. For example, if vector R has ten
"paratopes" (as in the lower graphics of right-hand screen
in Figure 2), then the bioarray has ten columns of spots
(as in left-hand screen of Figure 2).

As a result, the emulator detects roughly positions of all
spots of the bioarray as the squares (see left-hand screen
of Figure 2).

After that, the emulator defines more exactly positions
and sizes of the spots within the squares. According to
"key and lock" principle of "antibody-antigen" binding,
the emulator adjusts the shape of the "paratope" by
maximal overfall between the brightness of the
neighboring pixels of the "antigen" within every square.
This step of processing uses two directions: rows i and
columns j.

Let  iC , jC are coordinates of the center, and r is half-side
of the square in pixels. The adjusted bounds of the spot ia ,
ib , ja , jb , are determined by the following way:

ia: max {mi,j−mi+1,j},  ib: max {mi+1,j−mi,j},

j = jC , i = iC−r, ..., iC+r,

ja: max {mi,j−mi,j+1},  jb: max {mi,j+1−mi,j},

i = iC , j = jC−r, ..., jC+r.

The process repeats with the new values:

iC = (ia+ib)/2 ,  jC = (ja+jb)/2 ,

r = max{(ib−ia), (jb−ja)}/2 ,

until the difference between previous r and the new one
becomes no more than two pixels. Figure 2 shows results
of such adjusting in left-hand screen, where emulator has
marked each detected spot by bold points.

After the spots are detected and adjusted, the emulator
recognizes  the concentration of IgG in each spot using
SVD representation (1) of the spot image.

Let MS be matrix of the spot image:

MS ⊂ M,  MS = {mi,j},

 i = iC−r, ..., iC+r,  j = jC−r, ..., jC+r .



According to (1), the emulator computes first singular
value s of this matrix, and consider the concentration as
follows:

C(IgG) = ce sm ,

ce ≅ 1000,  sm = s / (4r2) ,

where sm is mean singular value per pixel of the spot, and
ce is an experimental coefficient of converting brightness
to concentration.

3.5 RECOGNITION RESULTS
Numerical experiment has been staged using the test set
of 19 bioarrays: 0205140101 – 0205140119.

Any bioarray has 2 rows and 10 column of spots (see left-
hand screen in Figure 2). Hence, full number of spots to
be recognized is equal to:

19×(2×10) = 380 .

Table 1 shows results of recognition of the spots.

Table 1: Number of Undetected Spots

Bioarray

02051401#

Undetected Spots

IMCOMP  MASK

Recognition time
(sec)

IMCOMP  MASK

01 0                      0 0.36              3.32

02 0                      2 0.41              3.12

03 0                      1 0.20              2.66

04 0                      3 0.32              2.86

05 0                      2 0.22              2.28

06 4                      0 0.23              2.19

07 0                      0 0.26              2.22

08 6                      1 0.27              2.62

09 0                      1 0.26              3.25

10 0                      1 0.30              2.22

11 0                      2 0.28              2.92

12 0                      0 0.24              2.65

13 0                      2 0.42              2.60

14 0                      2 0.22              2.64

15 0                      1 0.34              2.23

16 0                      0 0.28              2.19

17 0                      0 0.23              2.03

18 0                      0 0.26              3.01

19 4                      3 0.29              2.21

Spots total

380

 Total undetected

14                    21

Mean time per spot

0.014            0.130

We have also compared our immunocomputing method
(IMCOMP) with another method of recognition by
"mask" (MASK). Apparently, the MASK is the most
traditional, direct and simple method of image
recognition. Usually "mask" represents a square, which
pixels form a sample of the object to be recognized within
the image. The image is scanned by the "mask" to find
any location, where the correspondence between the
"mask" and the part of the image is no less than some
threshold. The correspondence is computed by comparing
all pixels of  the "mask" and the part of the image,
covered by the "mask". In our case the "mask" represents
a sample of the spot.

According to Table 1, the recognition rate of the
IMCOMP method is equal to

(1−14/380)×100% ≅ 96.3% ,

while the recognition rate of the MASK method is slightly
worse:

(1−21/380)×100% ≅ 94.5%.

Table 1 also shows that recognition by the IMCOMP
method is almost 10 times faster than by the MASK
method.

It worth noting, that all spots undetected by the IMCOMP
method are almost invisible. Figure 4 shows a typical
example of such undetected spots in the bioarray
0205140106.

As one can see from Figure 4, the last two spots in the
right-edge column of the bioarray are almost invisible. As
a more cogent argument, the profile of the right singular
vector is given below the spots. It is obvious, that the last
right-hand "paratopes" of the vector doesn't differ from
the background.

Figure 4: Example of Undetected Spots

Two other numerical experiments have been staged to
recognize the concentration of IgG in the spots. Tables 2,
3 and 4 show results of the experiments, where the
expected IgG (µg/spot) is approximately equal to 1:200
(ml/spot) of the diluted IgG (µg/ml). For example, 1.25
µg/spot corresponds to 250 µg/ml diluted, 0.63 µg/spot
corresponds to 125 µg/ml diluted, etc.



Table 2: Two Testing Bioarrays

Bioarray Size
(pixels)

Spots' Radius
(pixels)

0203070101 152×598 11

0205140101 167×450 12

Table 3: Spots of Bioarray 0203070101

Spot #
(row –

column)

Center
i-j

(pixels)

IgG
Recognized

(µµg/spot)

IgG
Expected
(µµg/spot)

1-1  25-22 1.24 1.25

1-2  24-75 0.78 1.25

1-3  24-135 0.55 1.25

1-4  25-190 0.52 0.63

1-5  24-246 0.41 0.31

1-6  23-298 0.40 0.16

1-7  24-353 0.13 0.08

1-8  21-407 0.06 0.04

1-9  23-459 0.02 0.02

1-10  22-515 0.00 0.01

2-1 132-20 1.28 1.25

2-2 132-78 0.82 1.25

2-3 133-132 0.58 1.25

2-4 132-190 0.50 0.63

2-5 133-246 0.47 0.31

2-6 131-297 0.22 0.16

2-7 130-351 0.08 0.08

2-8 131-407 0.03 0.04

2-9 138-461 0.05 0.02

2-10 131-517 0.01 0.01

It worth to admit, that recognition of the IgG
concentration in spots needs to be seriously improved.
However, it has to be noted that the expected IgG quantity
in each spot may differ from the real IgG quantity in the
spot due to the heterogeneous binding capacity of
nitrocellulose membrane. Moreover, the real IgG quantity
in the spot depends mainly from the accuracy and purity
of biological experiments, rather than from the accuracy
of our recognition method. The primary problem is to get
an objective data on the concentration of IgG in the
obtained bioarrays.

Table 4: Spots of Bioarray 0205140101

Spot #
(row –

column)

Center
i-j

(pixels)

IgG
Recognized

(µµg/ml)

IgG
Expected
(µµg/spot)

1-1  45-39 1.17 1.25

1-2  49-77 0.96 1.25

1-3  52-120 0.94 1.25

1-4  51-158 0.69 0.63

1-5  49-202 0.53 0.31

1-6  44-240 0.27 0.16

1-7  45-285 0.19 0.08

1-8  43-326 0.02 0.04

1-9  41-368 0.05 0.02

1-10  43-409 0.01 0.01

2-1 130-40 1.23 1.25

2-2 133-81 0.98 1.25

2-3 130-120 0.90 1.25

2-4 126-163 0.69 0.63

2-5 125-199 0.48 0.31

2-6 125-240 0.24 0.16

2-7 126-284 0.10 0.08

2-8 127-327 0.00 0.04

2-9 127-370 0.01 0.02

2-10 127-408 0.00 0.01

As an example, Table 5 shows optical density of the spots
of the bioarray 0203070101. These data have been
obtained by the UltraScan XL Laser Densitometer (LKB
Bromma, Sweden). However, the values of the optical
density have been read out visually, and the conversion of
the optical density d to the concentration of IgG based
also on an experimental dependence:

C(IgG) = (d − 2.1)/ 0.24 .

It worth noting, that the above results in Tables 1-4 have
been obtained by the automatic mode of the emulator. In
this mode  the emulator recognizes spots in any bioarray
without any prompting by user. This mode of the
emulator corresponds to the unsupervised learning in
terms of pattern recognition (Tarakanov and Skormin,
2002).

However, we have also developed a possibility for user to
show spot to the emulator in so called training mode. This
mode corresponds to the supervised learning (training) in
terms of pattern recognition. Figure 5 shows an example
of using this mode.



Table 5: Spots of Bioarray 0203070101 with Optical
Density

Spot #
(row –

column)

Optical
Density

(d)

IgG
Computed
(µµg/spot)

IgG
Expected
(µµg/spot)

1-1 2.37 1.13 1.25

1-2  2.33 0.96 1.25

1-3  2.28 0.75 1.25

1-4  2.26 0.67 0.63

1-5  2.23 0.54 0.31

1-6  2.23 0.54 0.16

1-7  2.17 0.29 0.08

1-8  2.16 0.25 0.04

1-9  2.13 0.12 0.02

1-10  2.13 0.12 0.01

2-1 2.4 1.25 1.25

2-2 2.34 1.00 1.25

2-3 2.32 0.92 1.25

2-4 2.28 0.75 0.63

2-5 2.26 0.67 0.31

2-6 2.19 0.38 0.16

2-7 2.18 0.33 0.08

2-8 2.16 0.25 0.04

2-9 2.17 0.29 0.02

2-10 2.17 0.29 0.01

Figure 5: Example of Training the Emulator

In the training mode user points to a spot by means of the
square in the left hand screen. By changing the size and
the position of the square, user covers the spot. By such a
way, the emulator learns about the size of the spots ("non-
self") and the value of the background threshold ("self").
Numerical experiment has shown, that the emulator
detects all undetected spots in Table 1 by using the
training mode. Figure 6 shows an example of detecting all
spots of bioarray 0205140106 by using the training mode.
Note, that four spots of this bioarray haven't been detected
by using the automatic mode (see Figure 4).

Figure 6: Detection of All Spots by Training Mode:
Compare with Figure 4

It worth also noting, that the emulator detects spots, and
only spots as "non-self" codes. For example, the emulator
doesn't detect any other codes like written numbers of
biomembranes (see Figures 2, 4, 6). This property
corresponds to so-called "self-tolerance" of the immune
system.

4 DISCUSSION

4.1 ARTIFICIAL IMMUNE SYSTEM
The main goal of our work is to create an artificial
immune system as a computer controlled fragment of the
natural immune system. This paper presents results of the
first step in this direction.

We use two "immune" methods in our work: direct
immunoassay method to create bioarrays and
immunocomputing method to recognize results of
immune reactions.

As a fragment of the immune system in vitro we use
bioarrays of immunoglobulin (IgG) molecules. These
molecules are attached to the nitrocellulose membrane to
form arrays of a kind of immune memory, like the silicon
cells form arrays of computer memory. Using computer
analogy, we can also consider, that concentrations of IgG
in locations (spots) of bioarray correspond to the stored
values in cells of computer memory.

To expose the concentration of IgG we use special protein
(pG) as a testing molecular signal, like special electronic
signals are used to read out contents of computer memory.
The results of immune interactions between IgG and pG
are visualized as black spots.



Therefore, main goal of our immunocomputing method is
to recognize such spots on a surface of nitrocellulose
membrane. In other words, we need this method to
recognize the concentration of IgG in each location of
bioarray.

Inspired by principles of antibody-antigen recognition in
the natural immune system, our method solve problems of
distinguishing background ("self" codes) of nitrocellulose
membranes from spots ("non-self" codes) of bioarrays and
processing the spots to recognize concentrations of
immune molecules.

A core of our immunocomputing approach to pattern
recognition is a mathematical model of binding, or
recognizing between antibodies and antigens. According
to the biological prototype, the central notion of this
model is binding energy. We determine the binding
energy by a bilinear form over the pair of corresponding
vectors. This bilinear form is determined by a real
rectangular matrix. Thus, we obtain a convenient
quantitative measure of the extent of recognition between
the antibodies and antigens, as well as a rigorous
mathematical model of the recognition based on SVD of
real valued matrices.

An advantage of our approach consists in reducing two-
dimensional input image of biomembrane to two one-
dimensional "antibodies". This feature allows to reduce
recognition time drastically, as shown in Table 1.

Another advantage seems to be a possibility of an
effective hardware implementation of the approach in so
called immunochip (Tarakanov and Dasgupta, 2002).
Such miniature silicon device could be very useful as a
part of biochips for immune diagnostics.

4.2 BIOCHIP
We consider a biochip approach as a way to improve and
to develop our bioarray technology in general (Tarakanov
and Goncharova, 2002). To overcome the main
deficiencies of the technology, we are developing the so-
called Biochip Controlling System (BCS). The core of
this system is the presented immunocomputing software.
The development  of BCS will allow to obtain the needed
accuracy and purity of biological experiments. The
function of BCS will be twofold: 1) as a liquid delivery
system of the biochip and 2) as a scan reader of the
biochip reactions.

Our BCS will use a combined method of the analysis of
the biochip reactions based on photometric and imaging
detection procedures. This method will be applied for the
analysis of optical and spatial parameters of reaction
locations on the biochip. Each location will include the
carbon particles labeled reagent system (CP system). The
photometric procedure will provide reflection measuring
of the optical density of the CP system. This procedure
will be basic for the analysis of the reactions by the BCS.
The imaging procedure will detect the spatial parameters
of the CP system. This procedure will be additional for
the BCS. The combination of these two procedures should

provide sure detection of the results of the biochip
reactions.

The BCS will contain: a) precision motorized two
coordinate stage; b) auto-manual or automated dispense
module and c) precision optical electronic detection
module.

The two coordinate stage and the dispense module will be
controlled by a PC compatible computer. We suppose to
use two types of dispense modules available in the
market: auto-manual and automated. Accordingly, our
BCS with the auto-manual dispense module could be used
in medical laboratories, while that with the automated
dispense module could be used for industry applications.

We intend to use a modification of the available
electronic pipettor as the auto-manual dispense head. This
pipettor is a multi-function instrument. It provides the
reagent's loading, diluting, mixing and dispensing with
the high accuracy by means of the embedded
microprocessor. The electronic pipettor will be moved
manually to the pipette washing sub-module and the
reagent's loading sub-module. These sub-modules will be
arranged separately.

The automated dispense module unites the dispense head,
washing sub-module and loading sub-module in one
system. All operations are performed by this dispense
module automatically.

The functioning of the BCS includes two steps. First, the
biochip will be placed on the horizontal surface of the two
coordinate stage under the dispense head. The reagents
will be dispensed on the biochip by means of its scanning
relatively to the dispense head. Second, the biochip will
be moved by means of the two coordinate stage to the
detection module and scanned by the detection head.

The digital or analog signals from the detection module
will be transmitted to the PC computer for processing
through the standard serial port or a special PCI card.

An important application of such biochip can be early
diagnostics of C-Reactive Protein as a reliable
biochemical marker suitable for detection of tissue
damage, necrosis and inflammation (Tarakanov and
Goncharova, 2002).

4.3 BIOCOMPUTER
In perspective, two steps could transform the proposed
biochip to a biomolecular computer: 1) an immunochip-
based controller, including 2) controlling of biomolecules
in the micro-wells of the biochip.

The first step is needed to replace a PC-compatible
computer by an immunochip. At this step the function of
the immunochip is twofold: 1a) control of the liquid
delivery system of the biochip and 1b) control of the
biochip reader.

The first step – the immunochip-based biochip controller
– is necessary for control reactions in the micro-wells of
the biochip. For example, the immunochip could



automate feeding the biochip with reagents and samples,
removing intermediate products, changing probes in the
process of training of the biochip, etc. Although such
functions seem complicated, it is worth noting that they
are currently under development for some microfluidic
biochips (Huang, 2002). Also at this step the immunochip
should provide a surveillance of the biochip surface,
including image processing from the biochip reader and
recognition of the results of the reactions in the micro-
wells.

The second step presents a solution to the key problem of
the biocomputer: providing control of biomolecules in the
micro-wells of the biochip by a molecular-electronic
impact computed and performed by the immunochip.
Simply put, the biocomputer could secrete biomolecules
with needed properties at appropriate locations on the
biochip. If the problem is solved, the next step could be
secretion of necessary biomolecules at appropriate times.
For example, in this way the implanted biocomputer
could control and correct natural immunity.

Therefore, the above two steps would allow us to obtain a
full-value biocomputer, where natural biomolecules
(proteins and DNAs) of the biochip collaborate with the
silicon schemes of the immunochip.

It is worth noting that the choice of the C-Reactive
Protein for one of the variants of the biochip is not
accidental. The functions of this protein are close to those
of cytokines – special proteins secreted by immune cells
to control immune response. It is known that violation in
synthesis and secretion of the cytokines could cause
several violations of immunity. Therefore, the
development of the biochip for detection of such proteins
is also a step by the biocomputer for evaluation and
control of the cytokine system in general. So, the
development of the biocomputer to control cytokine
complex in model biological micro-systems (in vitro) as a
fragment of computer controlled immune system seems
quite realistic and well-timed.

5 CONCLUSIONS
In our opinion, an important criterion of success of any
biological inspired approach in mathematics or computer
science is an effective application of the approach to the
area where it had came from. Accordingly, we have made
an attempt to apply our immunocomputing approach to
immunoassay-based diagnostic arrays. We can consider
our attempt as successful, because our method recognizes
more than 96% spots as "non-self" codes. It works almost
10 times faster than direct recognition of spots by
comparing them with a mask sample. A comparison of
our recognition method with other approaches and its
advantage had been also shown on the example of another
immunological application (Tarakanov et al., 2000).
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Abstract 
 
In this paper, a novel evolutionary algorithm for 
intrinsic hardware evolution of Field 
Programmable Gate Array (FPGA) controllers is 
presented. The main feature of the evolutionary 
algorithm consists of a mutation operator, in 
which the mutation rate is defined according to 
the fitness. Experimental results on a Kephera 
robot show that the algorithm proposed can 
successfully navigate the robot to avoid collision 
in an unknown/changing environment. 

1 INTRODUCTION 
Autonomous robot navigation is a very challenging 
problem. Conventional approaches based on off-line 
learned control policies generally do not work 
appropriately when implemented in real time 
environments. The development of a new research field 
named Evolvable Hardware (EHW), i.e., application of 
evolutionary algorithms to automatic design/ 
reconfiguration of electronics circuits (Zebulum et al., 
2001) presents a great potential to tackle the problem of 
adaptation in unknown/changing environments. It is 
proposed that autonomous robotics could benefit from the 
development of EHW. 
Two methodologies have been established for the design 
of EHW: Extrinsic and intrinsic (Thompson, 1996), 
(Miller and Thompson, 1998), (Layzell, 1998), (Haddow 
and Tufte, 2000), (Hollingworth et al., 2000). In the 
former case, both the evolutionary process1 as well as the 
fitness evaluation of each individual (the circuit) are 
simulated in software. The entire design is carried out off-
line and after the evolutionary process has completed, the 
hardware is implemented in real time. In the latter case, 
the evolutionary process is simulated in software but each 

                                                           
1 In the context of genetic algorithms the evolutionary process means the 
application of the genetic operators: selection, crossover and mutation. 

individual is executed in hardware in real time (on-line 
evolution) (Haddow and Tufte, 2000), (Hollingworth et 
al., 2000). This is possible due the development of 
electronic devices such as Field Programmable Gate 
Array (FPGA), which are reconfigurable devices with no 
pre-determined function (Shirasuchi, 1996). Each 
individual is represented as a Bitstring that is downloaded 
to the chip as configuration data. This data includes a 
definition of each cell’s functionality as well as the 
topology of the system. 
For autonomous robot navigation intrinsic evolution 
presents a promising approach. A standard Genetic 
Algorithm (GA) has been applied to EHW because of its 
binary representation, which matches perfectly with the 
configuration bits used in FPGA. Some work has been 
produced to evolve on-line FPGA-based robot controllers 
using genetic algorithms (Thompson, 1995), (Keymeulen 
at al., 1997), (Haddow and Tufte, 1999), (Tan et al., 
2002). For on-line evolution the fitness is evaluated on 
target hardware. Therefore changes in environment are 
reflected immediately in the fitness evaluation. 
Unfortunately on-line evolution is time consuming, 
especially for robot navigation in an unknown 
environment. So it is necessary to impose restriction on 
the population size. 
In this paper, the problem of real time adaptation of 
autonomous robot navigation in changing environment is 
formulated as a time-dependent optimization problem: 
Find an appropriate function F (the controller) which 
maps the inputs from sensors to the outputs (control 
signal to the motors). To solve this problem, a novel 
evolutionary algorithm to evolve a reconfigurable FPGA-
based controller is proposed.  
The paper is organized as follows: in section 2 a 
description of the algorithm is given; section 3 describes 
the Kephera robot, the hardware and the software 
platform used in the experiments. In section 4, 
experimental results are presented showing the potential 
of the approach, followed by conclusions in section 5.  
 



Figure 1: Evolutionary algorithm. 

2 EVOLUTIONARY ALGORITHMS  
Evolutionary algorithms are inspired by principles of the 
evolution theory. The basic idea is to maintain a 
population of individuals (candidate solutions) which 
evolve under selective pressure that favours better 
solutions. The increasing interest in Evolutionary 
Algorithms is because their robust and powerful adaptive 
search mechanisms. For the interested reader see Fogel 
(1995). 
In the following, a novel evolutionary algorithm which 
has similarities with evolution strategies and evolutionary 
programming (Fogel, 1995) is presented: The population 
is made up of two sub-populations: a memory population 
M and an innovation population I. The individuals of the 
innovation population undergo the operation of 
replication, mutation, and selection. The algorithm is 
shown in Fig.1.  
Firstly, the memory population M of individuals 
represented as bit strings is randomly initialized, followed 
by the fitness evaluation. By applying the replication 
operator with size N to the memory population M results 
in the innovation population ,I  which after application of 
the operator mutation, results the population '.I  The 
innovation population is evaluated and sorted according 
to the fitness in ascending order resulting in ''I . The 
fittest individuals of ''I  compose then the memory 
population and the other individuals are discarded (die-
out); this process represents one generation. The mutation 
process is carried out as follows: Individuals with high 
fitness have applied to them a low mutation rate, while 
individuals with low fitness are subjected to a high 
mutation rate. The tuning of the mutation rate depends on 
the problem, for the robot navigation a relation was 

defined for the mutation rate according to the fitness, 
which will be defined later. Recent work relating to 
adaptive mutation rates in genetic algorithms can be 
found in Thierens (2002) and references therein. 

3 FPGA-BASED CONTROLLER  
The implementation is based on intrinsic EHW which is 
evolved using a Xilinx Virtex FPGA. The genotype of 
each individual is mapped to the circuit on chip and the 
fitness is evaluated on-line. The architecture of the control 
system is depicted in Fig. 2. The following describes the 
Kephera robot, the hardware and the software used to 
carry out the experiments. 
 
 

 
Figure 2: The control system architecture. 

 
 

 
Figure 3: The Kephera robot. 

 

Algorithm: 
initialization of the

population (M);

evaluatation (M);

while (true)

{

replication (M); I⇒

mutation )(I ; 'I⇒

evaluation )'(I ; ''I⇒

selection )''(I ; M⇒

}

end



3.1 THE KEPHERA ROBOT 
The Khepera robot used in the experiments is shown in 
Fig. 3. It has eight infrared proximity sensors and 2 
wheels (Michel, 1999). Each sensor can emit infrared 
light and detect the reflected signals. The sensor value is 
varied from 0-1023. The higher the sensor value the 
closer the distance between sensor and obstacle. A value 
of 400 is used here as a threshold value to convert eight 
sensor input into 8 bits of information. Each wheel of the 
robot is controlled by an independent DC motor. The 
controller receives 2 bit information for four commands: 
move forward, move backward, turn left and turn right. 
The robot is controlled by the host PC through the cable 
connecting between RS-232 and the robot.  

3.2 THE HARDWARE 
FPGA is a VLSI chip that comprises a matrix of 
configurable logic blocks (CLBs) surrounded by 
programmable input/output blocks (IOBs). With the 
routing and logic information stored in its memory block, 
the FPGA provides the desired function by the download 
of the configuration Bitstream. The FPGA used in this 
experiment is Xilinx’s Virtex V1000, (Xilinx Datasheet, 
2001) which is connected to a PC via a PCI interface card. 
In the past, most of the researchers used Xilinx XC6200 
series in their experiments, because this design restricted 
the connection between the outputs of logic blocks in any 
random configuration, and hence the possibility of 
“dangerous” configurations. However, Xilinx 
discontinued to supply XC6200 and switched their 
product to Virtex series. Compared with the Xilinx 
XC6200, the Virtex device has multi-directional routing, 
which makes it possible to connect two outputs of logic 
gates together. This unsafe property prohibits researchers 
using random Bitstream to configure the routing 
connection of the device. One possible solution to this is 
to construct a XC6200 model on Virtex chip to restrict the 
routing (Hollingworth et al., 2000). This alternative way 
provides a safe method to implement both logic and 
routing modification on Virtex series FPGA. However, 
this solution has limits due to its simple routing model 
(Hollingworth, 2001). It is not easy for the input signal to 
pass through the matrix of Logic Cells. Also, the XC6200 
model consumes considerable resources on the device. In 
order to evolve a safe and efficient controller in these 
experiments, only the logic function of the robot 
controller will be evolved, instead of both logic and 
routing. The robot controller is evolved using 22 LUTs 
(Look Up Tables) on the FPGA, with 8 input bits from the 
sensors, and 2 output bits to the motors as shown in Fig. 
4.  
The hardware interface is the XHWIF (Xilinx Hardware 
Interface), a java interface using native method to operate 
the hardware platform dependent part of the interface. In 
these experiments, it is used to communicate between 
FPGA and host PC. 

3.3 THE SOFTWARE 
JBits (Xilinx, 1999) is a set of JAVA classes which 
provides an Application Program Interface (API) into the 
Xilinx Virtex FPGA family Bitstream. In these 
experiments, this interface is used to operate on the 
Bitstream generated by Xilinx Foundation (a circuit 
design tool from Xilinx). It can dynamically modify the 
circuit design on Virtex implementing genotype mapping. 
The basic element that JBits operates on is the LUT. A 
LUT has four input vector and one output. There are 

1624 =  information bits. For example, a true table of 
one four input OR gate is: 
 
OR 1111 1111 1111 1110  0xfffe. 
The following JBits source code is used to set one LUT to 
implement an OR gate. 
 
 JBits.set(1, 1, LUT.SLICE_G, 0xfffe). 
 
Therefore, each controller consists of 22 LUTs * 16 
bits/LUT = 352 bits. So, each individual is represented by 
352 information bits.  

 
Figure 4: FPGA-based controller.  

 

 
Figure 5: The experimental test environment for the 
Kephera robot navigation. 



4 EXPERIMENTAL RESULTS  
The experimental configuration used to test the algorithm 
is shown in Fig. 5.  

4.1 THE FITNESS FUNCTION 
The fitness measure is a very important part of an evolved 
robot controller. In on-line evolution, different individuals 
may not face the same environments. The wheels’ speeds 
are determined by the real-time information from the 
sensors. The controller must send a sequence of different 
commands to the wheels in real-time. These make the 
fitness measure much more difficult to evaluate (Tan et 
al., 2002). To solve the problem, the fitness function used 
here will not try to compare the value between input 
information and output commands. It simply measures the 
time and distance the robot has run before it hits an 
obstacle, the longer the time and the longer the distance 
the higher the fitness value. So, the fitness value can be 
calculated according to a simple relation: 
 
 fitness = distance * time/1000 
 
The distance is the value of the position counter of the 
two motors, and the time is the value of I/O period 
counter. The distance of about 1000 represents a 
movement of 40mm. If the robot is turning around, there 
will be no increment in distance value. In order to shorten 
the time, a time limit value is set to 140. An individual 
will be killed when the limit is reached; even if it has not 
hit the wall. At the same time, if the individual is stuck in 
some position without any distance improvement, it will 
be killed. The fitness limit in the experiment is 1400, 
which means the robot run forward without any steering 
change. In the experiments, the values of two nearby 
sensors are used to judge whether the robot is too close to 
the wall, and an escape time is provided to the individual 
to quit from the dead zone where the last one was killed. 

4.2 PARAMETERS SETUP AND RESULTS 
The evaluation of each individual on-line is very time 
consuming. Therefore, a small population size was used. 
For the experiments, the memory population has size 16, 
and the innovation population has 3=N sets of 16 
individuals each. So, the total population size amounts 64 
(16 for the memory population + 3*16 for the innovation 
population). The memory population M is not mutated in 
order to make sure that good individuals of the memory M 
be not lost by the mutation operation. 
In order to compare the results, a standard case was used, 
where all individuals of the innovation population have 8 
bits per Bitstring mutated, i.e. a mutation rate equal 0.022. 
Fig. 6 shows the results for this case. 
The mutation rate used, i.e., mutation tacking into account 
the fitness, is calculated according to the relation: n*(1- 
norm_fit), where n stands for the number of bits and 
norm_fit designates the normalized fitness. Note that,   in  

 
Figure 6: All individuals of the innovation population 
have equally 8 bits mutated. 
 

 

 
Figure 7: The mutation rate for each individual of the 
innovation population is calculated according to 16*(1- 
norm_fit). The best individual has no bits mutated and the 
worst individual has 16 bits mutated. 

 
 

 
Figure 8: The mutation rate for each individual of the 
innovation population is calculated according to 35*(1- 
norm_fit). The best individual has no bits mutated and the 
worst individual has 35 bits mutated. 



order to obtain an integer number of bits to be mutated, 
simply the integer part is taken. Two cases are considered: 
For n = 16, the best individual has normalized fitness 1, 
therefore no bits are mutated and the worst individual has 
normalized fitness 0, therefore 16 bits are mutated which 
corresponds to a mutation rate of 0.045. Fig. 7 shows the 
results for this case. In the next case studied, the mutation 
rate was increased. For n = 35, the worst individual had 
35 bits mutated which corresponds a mutation rate of 0.1. 
The result for this third case is shown in Fig. 8. 

4.3 DISCUSSIONS 
The experimental results present some interesting 
features. In the first case as shown in Fig. 6, considering a 
constant mutation rate for all individuals of the innovation 
population, it can be noted that it is quite difficult to 
achieve the average fitness of 1200 which was reached 
after 50 generations. The fitness of the best individual 
presents an oscillating behaviour. In the second case as 
depicted in Fig. 7, the strategy examined consists of a 
mutation rate related to the fitness, whereas the number of 
mutated bits for the worst individual was 16. So, using 
adaptive mutation the average fitness reached the value 
1200 in less than 30 generations with the fitness of the 
best individual presenting a quite stable behaviour around 
the maximum value of 1400. Therefore, capable to 
tracking quite well the dynamic environment. This case 
presents a substantial improvement in performance 
compared with the former case. In the third case studied 
shown in Fig. 8, the same mutation strategy was used but 
the mutation rate was increased, i.e., for the worst 
individual the number of mutated bits was 35. For this 
case, the behaviour of the average fitness is very 
oscillatory, but even so the fitness of the best individual 
presents a high value around 1400 with more fluctuation 
when compared with the former case, which is due the 
high mutation rate.  
By means of the experiments carried out it can be 
observed that the mutation operator is a very important 
one to track dynamic environments as is the case of 
autonomous robot navigation. It might be argued that it is 
quite difficult to obtain adaptive behaviour with constant 
mutation rate. With an adaptive mutation rate it was 
possible to obtain good results with an intermediary 
mutation rate, which is dependent of the problem on hand. 
Also, the results demonstrated that a too high mutation 
rate might lead to an unstable behaviour, i.e., the inability 
to track change of the environment. In (Travis and Travis, 
2002) it was pointed out the role of mutator clones in 
adaptation of organisms to fluctuating environments. In 
their experiments with different mutation rates they 
noticed the influence of different mutation rate leading to 
different behaviours, inclusive chaos at high mutation 
rate. It may be that biological inspiration provides us with 
new insights to evolve adaptive behaviour to dynamic / 
unknown environments.  

5 CONCLUSIONS  
This paper presented a novel evolutionary algorithm to 
evolving FPGA-based controller for autonomous 
navigation of a mobile robot. The algorithm, in which the 
mutation rate is defined according to the normalized 
fitness has demonstrated suitability to tracking dynamic 
environment. Experimental results on the Kephera robot 
have shown that the algorithm is capable of providing 
autonomous navigation in real time for collision 
avoidance. In particular, the new operator mutation 
proposed, has been examined for different mutation rates. 
It was observed that different behaviours emerge, e.g. 
good tracking of dynamic changes at intermediary 
mutation rates, and the presence of fluctuations, or 
instability, for high mutation rate. 
Since the presented algorithm is simpler than genetic 
algorithms because no crossover is used, its 
implementation into an FPGA allowing the whole 
evolutionary process execution in hardware is highly 
desirable. Further work includes investigating the 
performance of the algorithm for fault tolerance. 
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Exploiting the analogy between immunology and sparse distributedmemories: a system for 
lustering non-stationary data
Emma Hart and Peter Ross,Napier University, S
otlandfe.hart,p.rossg�napier.a
.ukAbstra
tThe relationship between immunologi
almemory and a 
lass of asso
iative memo-ries known as sparse distributed memories(SDM) is well known. This paper proposesa new model for 
lustering non-stationarydata based on a 
ombination of salient fea-tures from the two metaphors. The resultingsystem embodies the important prin
iples ofboth types of memory; it is self-organising,robust, s
alable, dynami
 and 
an performanomaly dete
tion. The model is �rst appliedto 
lustering stati
 datasets, and is shownto outperform two other systems based onimmunologi
al prin
iples. It is then appliedto 
lustering non-stationary data-sets withpromising results.1 INTRODUCTIONModern te
hnology makes it in
redibly straightfor-ward for 
ompanies to gather vast amounts of data
on
erning individuals and their habits on a daily ba-sis, for example through the use of 
redit 
ards orsupermarket loyalty 
ards. Interpreting su
h hugequantities of data, and identifying 
lusters and trendswithin it is a mammoth task, espe
ially as the datamay be rapidly 
hanging. Data-
lustering 
an be de-�ned as \the unsupervised 
lassi�
ation of patterns(observations, data items or feature ve
tors) intogroups (
lusters)" [Jain et al., 1999℄, and is performedin the hope that impli
it previously unknown and po-tentially useful knowledge 
an be extra
ted from thedata. It is a large �eld in its own right, and there aremany do
umented approa
hes.However, the immune metaphor may provide a noveland alternative approa
h. Both the immune system

and a data-
lustering system have to operate in verylarge input spa
es. In the immune system, a lympho-
yte re
ognises a set of antigens, due to its impre
isemat
hing 
hara
teristi
s; that set 
an be 
onsidered tobe equivalent to a 
luster within a database. The lym-pho
yte that re
ognises all the items in a 
luster thusprovides a 
on
ise des
ription of the 
luster itself. Thenumber of lympho
ytes present and the spe
i�
ity ofthe re
ognition pro
ess provides a me
hanism for 
on-trolling the number of 
lusters present, and hen
e pro-vides a method of 
ontrolling how spe
i�
ally (or gen-erally) the 
lusters are des
ribed. The fa
t that re
og-nition is impre
ise is important | data in a databaseis likely to 
ontain mu
h noise and redundant infor-mation, therefore some kind of impre
ise re
ognitionme
hanism will be essential.The natural immune system 
an rea
t to unseenpathogens either by produ
ing new lympho
ytes us-ing its inbuilt diversity generating me
hanisms or byadapting existing lympho
ytes via mutation me
h-anisms. Similarly, when new data arrives in thedatabase, the 
entres and sizes of the 
lusters may needto move and adapt in order to re
ognise the new data.New 
luster 
entres may be 
reated and old ones maydisappear over the 
ourse of time, the key point beingthat the system 
an respond dynami
ally to the stateof the database at a given moment in time.The natural immune system is very eÆ
ient at re
og-nising the sudden appearan
e of harmful invaders; adata-
lustering system should be able to re
ognise theappearan
e of anomalous data in the database. Thisfeature would automati
ally result from an immunebased model however | if a data-item is not re
og-nised by any 
luster it would result in the system hav-ing to 
reate a new lympho
yte. External observationthat this has o

urred would signify that perhaps thatthe data is non-representative of the general patternsand therefore triggering some warning. Imagine for ex-ample attempting to 
luster data 
olle
ted by a 
redit-




ard 
ompany relating to 
ard usage. The 
ompany isinterested in 
lustering the data to identify patternsin 
ard usage, but would also like to dete
t fraudulent
ard-usage. If a newly presented data-item does notbelong to an already established 
luster, it 
ould iden-tify an attempt at fraudulent usage of the 
ard, whi
hfurther human examination 
ould verify. Finally, thedistributed nature of the immune system ar
hite
tureis attra
tive, given the fa
t that very large datasetsare also likely to be distributed.
2 Related WorkSeveral of the features just des
ribed have been mod-elled in a number of very di�erent implementations ofarti�
ial immune systems and applied to the problemof 
lustering data. For example, Potter et al. de-s
ribe a model of an AIS that uses a 
oevolutionarygeneti
 algorithm (GA) to evolve antibodies to 
lus-ter arti�
ial data sets [Potter and De Jong, 2000℄ andCongress voting re
ords [Potter and De Jong, 1998℄;Forrest et. al [Forrest et al., 1993℄ des
ribe a GAthat uses emergent �tness sharing to �nd pat-terns; Hunt et al. [Hunt et al., 1999℄ des
ribe asystem named Jisys whi
h was used to 
lusterdata for use in mortgage fraud dete
tion and Tim-mis [Timmis et al., 2000, Timmis and Neal, 2001℄ hasadapted this system to su

essfully 
luster the wellknown but very small ben
hmark data set 
ontain-ing iris petal sizes. Both the Timmis and Hunt workused a model based on 
onne
ted networks of anti-bodies, in whi
h nodes whi
h are 
onne
ted re
ognisesimilar patterns. A similar approa
h was adopted by[De Castro and Von Zuben, 2000℄ who present a net-work model for data 
lustering and �ltering redundantdata. So far, none of these methods have addressed thequestion of 
lustering data in time-varying databases.Although there is no intrinsi
 barrier to extending ei-ther the 
oevolutionary or network models to deal withnon-stationary data, both methods present obsta
les.In the network model, there are high 
omputationaloverheads asso
iated with re-organising large networksas the data 
hanges, whi
h in
rease as the size of thedatabase in
reases also. It is also un
lear whether the
oevolutionary method of evolving 
lusters is able to
ope with extremely large databases, parti
ularly asthe antibodies 
ompete to ex
lusively re
ognise data,whereas in reality 
lusters may overlap.

3 Exploiting the 
orresponden
ebetween immunology and SDMSmith et. al [Smith et al., 1999℄ have shown that theimmune system 
an be 
onsidered to be representa-tive of the same 
lass of memories as Kanerva's SparseDistributed memory, [Kanerva, 1988℄. The SDM is a
ontent-addressable memory whi
h was originally pro-posed as an eÆ
ient method for storing a very largenumber of large binary data patterns using a verysmall number of physi
al data addresses, in a mannerwhi
h allows a

urate re
all of all the data. An SDM is
omposed of a set of physi
al or hard lo
ations, ea
h ofwhi
h re
ognises data within a spe
i�ed distan
e of it-self | this distan
e is known as the re
ognition radiusof the lo
ation. Ea
h lo
ation also has an asso
iatedset of 
ounters, one for ea
h bit in its length, whi
h ituses to `vote' on whether a bit re
alled from the mem-ory should be set to 1 or 0. An item of data is stored inthe memory by distributing it to every lo
ation whi
hre
ognises it | if re
ognition o

urs, then the 
ountersat the re
ognising lo
ations are updated by either in-
rementing the 
ounter by 1 if the bit being stored is 1,or de
rementing the 
ounter by 1 if the bit being storedis 0. To re
all data from the memory, all lo
ationswhi
h re
ognise an address from whi
h re
all is beingattempted vote by summing their 
ounters at ea
h bitposition; a positive sum results in the re
alled bit be-ing set to 1, a negative sum in the bit being set to 0.This results in a memory whi
h is parti
ularly robustto noisy data due to its distributed nature and inexa
tmethod of storing data. These properties make it anideal 
andidate for addressing 
lustering problems inlarge databases. For example, we 
an 
onsider ea
hphysi
al lo
ation along with its re
ognition radius tode�ne a 
luster of data; the lo
ation itself 
an be 
on-sidered to be a 
on
ise representation or des
ription ofthat 
luster, and the re
ognition radius spe
i�es thesize of the 
luster. Clusters 
an overlap | indeed, itis this pre
isely this property whi
h allows all data tobe re
ognised with high pre
ision whilst maintaininga relatively low number of 
lusters. If no overlap isallowed, then a large number of lo
ations are requiredto 
luster the data, the system be
omes overly spe-
i�
, and hen
e general trends in the data are lost. Inthe form des
ribed, the SDM is also stati
 and in
ex-ible, however given its powerful and eÆ
ient storageand re
ognition 
apa
ities, it is fruitful to adapt it tooperate in a dynami
 environment.Previous work by the authors [Hart and Ross, 2001℄presented an immune system model for 
lustering mov-ing datasets based on an SDM that was dynami
,adaptable and 
apable of tra
king 
hanges in large vol-



umes of data. In this model, an antigen is equivalentto a pie
e of data, an antibody to a des
ription of a
luster, and the ball of stimulation of the antibodyde�nes the size of the 
luster. The basi
 propositionof the model was to use a 
oevolutionary GA, run-ning 
ontinuously, to �nd qui
kly the set of antibod-ies (and their 
orresponding balls of stimulation) thatbest 
luster the data 
urrently visible to the system.Whilst some su
esss was observed, the model su�eredfrom three drawba
ks; namely, that the evolved SDMsfailed to re
ognise some antigen altogether, that 
or-re
tly setting the re
ognition radii of ea
h 
entre is ex-tremely diÆ
ult, and that the algorithm is relativelyslow, due to the nature of the �tness fun
tion. Thispaper presents a new model, the self-organising SDMor SOSDM, whi
h 
losely models the self-organisingnature of the biologi
al immune system, one of its fun-damental 
hara
teristi
s. SOSDM views immunolog-i
al memory as a truly self-organising system. Ini-tially randomly pla
ed hard lo
ations self-organise inorder that they be
ome distributed throughout theinput data spa
e in a manner whi
h re
e
ts the in-put data distribution. This seems an entirely logi-
al step | the immune system itself is self-organising,whilst viewed from the 
omputational angle, there isan abundan
e of literature des
ribing algorithms forself-organising systems, the 
lassi
 example of 
oursebeing the Kohonen network, [Kohonen, 1982℄. Fur-thermore, a number of data-
lustering algorithms relyon self-organising prin
iples, and the existing immune-network models that perform data 
lustering arealso self-organising,[De Castro and Von Zuben, 2000,Timmis et al., 2000℄ and [Timmis et al., 1999℄ 
om-pares an AIS to a Kohonen network.Despite its similarity to immunologi
al memory,the SDM in its original form is unsuitable for
lustering data, for reasons des
ribed in detail in[Hart and Ross, 2001℄. However, [Hely et al., 1997℄have proposed an alternative model of an SDM whi
hwas developed in order to handle non-random inputdata more satisfa
torily then Kanerva's original sys-tem. A

ording to [Hely et al., 1997℄,\the SDM signalmodel retains the essential 
hara
teristi
s of the orig-inal SDM whilst providing the memory with a greaters
ope for plasti
ity and self-evolution. By removingmany of the problemati
 features of the original SDMthe new model is not as dependent upon a priori in-put values.". In Hely's model, the storage lo
ationsthat make up the �nal memory are not known fromthe start. Initially lo
ations are 
reated until there isan ex
ess of storage lo
ations whi
h then 
ompete foravailable signal (i.e. data). Storage lo
ations re
eiv-ing little or no signal are removed. Lo
ations whi
h

survive are 
hosen for the total amount of signal theyre
eive. The re
ognition radius of the original SDM isrepla
ed by a new parameter whi
h de
reases the valueof the signal as it spreads out. Lo
ations have real val-ued 
ounters to store a 
opy of the data weighted bythe strength of signal they re
eive. The signal does notpropagate after it falls below a minimum strength. Im-portantly, in the 
ontext of data-
lustering, this modeldoes not rely on a single parameter de�ning a re
og-nition radius, and furthermore does not depend onlo
ations being randomly distributed throughout theinput spa
e; 
learly, the input data in a database isnot random. Our new model SOSDM, borrows fromthe underlying philosophy of the Hely signal model ofdistributing data, but modi�es the detail somewhat.Data is distributed to many lo
ations with de
reasingstrength, but we also take inspiration from the algo-rithm used by [Potter and De Jong, 2000℄ in that 
en-tres 
ompete for data based on their aÆnity for thedata. In order 
ope with the demands of 
lusteringnon-sationary data whi
h requires the memory to be
exible in terms of the number of 
entres present atany given time, nodes are added and deleted only asne
essary in areas of the input spa
e that are misrep-resented given the 
urrent state of the data.4 Implementation of SOSDMPseudo-
ode outling the SOSDM algorithm is given in�gure 1. The basi
 prin
iples are as follows: Firstly,input data patterns (or a random subset of the data-set) are distributed to a subset of the hard lo
ations,based on the aÆnity of ea
h hard lo
ation for the data-item in a bat
h pro
ess. This results in the 
ounters ofthe subset of lo
ations being updated, a

ording to thestrength of ea
h signal re
eived. After all signals havebeen propagated, the a

umulated error at ea
h lo
a-tion is 
al
ulated. The error is equivalent to the sumof the distan
es between ea
h node and any data itre
ognises, weighted by the signal strength. The valueof the error is then used to allow the hard lo
ationsto self-organise | lo
ations gravitate towards areas ofthe spa
e in whi
h they re
ognise data, the distan
eand dire
tion of the movement determined by the a
-
umulated error. Ea
h of these steps is now des
ribedin greater detail.4.1 Distributing the DataData is distributed through the SDM a

ording to theaÆnity A of ea
h 
entre 
 for an input signal a. Thisis de�ned simply as Hamming Distan
e between theinput data and the address of the 
entre 
 (equation1).



1. begin with a �xed number of 
entres N , with randomly initialised positions and
ounters set to 0.2. present a subset s(s � N) of the data-set visible at time t to the SOSDM3. distribute the data in the s to ea
h 
entre in the SOSDM, with a strength pro-portional to the aÆnity of the 
entre for the data� update the 
ounters at ea
h 
entre a

ording to the strength of signal re-
eived� 
ompute the a

umulated error at ea
h 
entre4. update 
entre positions | the distan
e and dire
tion of the move is determinedby the total a

umulated error at the 
entre5. update 
entre 
ounters6. add or delete nodes from the memory if ne
essary7. go ba
k to step 2 Figure 1: The SOSDM algorithmA(
i; a) = j=LXj=1 � 1 if V (
j) = aj0 otherwise (1)The aÆnity of ea
h of the N 
entres for the inputdata is 
al
ulated. Following this, the 
entre with thehighest aÆnity for the antigen a, denoted by A� 
anbe determined:A� = max(A(
1; a); ::::;A(
N ; a)) (2)This value A� is then used to determine how mu
h ofa signal is distributed to ea
h 
entre. Signal is dis-tributed a

ording to its strength, where the strengthof a signal at 
entre 
i is proportional to the ratio ofthe aÆnity of that 
entre for the signal, A(
i; a) to A�.A further parameter known as the signal-threshold tis introdu
ed, su
h that (0 � t � 1). Signal is onlydistributed to those 
entres in whi
h the strength ofsignal is greater than this threshold. This is shown inequation 3.S(
; a) = � AA� if S(
; a) > t0 otherwise (3)Distributing a signal to a 
entre implies updating the
ounters at that 
entre. The 
ounter C(
ij) for ea
h bitj at ea
h 
entre 
i is updated a

ording to equation 4,where 
 is equal to 1 if V (
ij)1 and to -1 if V (
ij) = 0.

C(
ij) = C(
ij) + 
S(
; a) (4)As signal is distributed in this manner, a running totalof the a

umulated signal re
eived at ea
h 
entre isin
remented, as shown in equation 5:8
 : R(
) = R(
) + S(
; a) (5)4.2 Cal
ulating the Error at Ea
h NodeThe self-organising me
hanism by whi
h 
entres movearound the SDM is based on a 
al
ulation of the totalerror a

umulated at ea
h 
entre after all input signalshave been distributed to the SDM. Error is 
al
ulatedin the following manner; �rstly, ea
h time a signal isstored at some 
entre 
, the error at ea
h of the jbit positions for the address of that 
entre is updateda

ording to equation 6. The error at ea
h bit positionis this e�e
tively a measure of the di�eren
e betweenthe desired value of the 
entre address at position j asgiven by the value of the antigen at position j and thea
tual value of the 
entre address, V (
ij).E(
ij) = E(
ij) + S(
i; a)(aj � V (
ij)) (6)Movement of 
entres only o

urs after all data hasbeen presented to the SDM, whi
h allows the totalaverage error at ea
h 
entre, E , to be 
al
ulated, a
-
ording to equation 7. Note that this will always have



a value lying between -1 and 1.E(
ij) = E(
ij)=R(
i) (7)4.3 Updating the nodes position and
ountersOn
e all data has been presented, self-organisation ofthe 
entres 
an take pla
e. Thus, as shown identi�edin steps 4 and 5 of the SOSDM algorithm in �gure1, the address of ea
h 
entre is modi�ed as the 
entresmove to parts of the input spa
e more representative ofthe signal they are re
eiving. The 
ounters asso
iatedwith a 
entre also move, however they too are modi�edas the physi
al lo
ations of the 
entres move to re
e
tthe new position of the 
entre.The probability with whi
h the position and the
ounter of ea
h bit j in a 
entre 
i are moved is de-�ned a

ording to the absolute value of the averageerror E(
ij). If the value of jE(
ij)j is greater than0.5, then this value determines the probability withwhi
h an address bit is 
ipped and its 
ounter up-dated. (The introdu
tion of the value of 0.5 ensuresthat the system will eventually stabilize given a stati
data set and prevents random movements). Thus, ifE(
ij) < 0, then V (
ij) ) 0, and if E(
ij) > 0, thenV (
ij)) 1:. Equation 8 summarises the e�e
t on the
ounters for ea
h bit j in ea
h 
entre 
i for all 
entresin whi
h jE(
ij)j > 0:5. A new parameter is introdu
ed| the in
uen
e-
ounter, I. This parameter allows theamount by whi
h the 
ounters are adjusted to be ex-pli
itly 
ontrolled.C(
ij)) C(
ij)� �1 + �I � E(
ij)�� (8)Thus, the e�e
t on a 
ounter is that it is in
reasedor de
reased by a per
entage of its original value, theamount of whi
h is proportional to the total error a
-
umulated at the node. The e�e
t on the address of bitj is that it is 
ipped, with a probability proportionalto the average error a

umulated at that address lo
a-tion.In summary, the key features of the SOSDM algorithminvolve distributing a sample of data to the system,followed by allowing the system to self-organise, in amanner dependent on the average error a

umulatedat ea
h 
entre. The algorithm is iterated until it sta-bilises (given a stati
 data set). Note that when usingSOSDM there is no need to 
al
ulate the mean re-
all a

ura
y of the system at ea
h iteration, as withCOSDM. The value of this parameter does not feed-ba
k into the algorithm and has no bearing on its per-

forman
e. However, in order for the observer to evalu-ate the performan
e of SOSDM, this quantity must be
al
ulated. The method by whi
h this is done is nowoutlined.4.4 Re
alling Data from the SOSDMThe quality of the SOSDM de�ned by this model ismeasured by the a

ura
y with whi
h data stored inthe memory 
an subsequently be re
alled.When attempting to re
all an antigen a, �rst the anti-gen that is retrieved from the memory a0 is 
al
ulated,and then this is 
ompared to the desired antigen, i.e.that whi
h was originally stored in the memory, a. Thepro
ess is as follows:� Cal
ulate the subset of 
entres n0 for whi
h thesignal strength S(
i; a) > t� Sum the 
ounters of ea
h member of the subset n0at ea
h of the j bit positions to give �j(a). Thevalue of ea
h 
ounter C(
ij) is weighted by thestrength S(
i; a) of the signal during the summa-tion pro
ess, as shown in equation 9.�j = Xi2n0 C(
ij ; a)� S(
i; a) (9)Then, as in the original SDM, any bit where �j > 0has a 1 at that lo
ation in the re
alled data, and anybit where sigmaj < 0 has a 0 at that lo
ation inthe re
alled data. Thus, the a
tual re
alled antigenis 
al
ulated, 
ompared to the desired antigen, andthe mat
h-s
ore M between the a
tual and desiredantigen derived. This is simply the number of bit po-sitions in whi
h the re
alled data and original datahave identi
al values. The mat
h-s
ore is then used to
al
ulate the mean re
all a

ura
y, r, whi
h is a quan-titative measure of the performan
e of the system, andis given in equation 10.Mean re
all a

ura
y r = 1N i=NXi=1 M(a0i; ai) (10)This quantity thus measures the number of mat
hingbits between a re
alled antigen and the original storedantigen, and hen
e has a value between 0 and L, whereL is the length of the antigen.4.5 Experimental Set-upExperiments were �rst performed using stati
datasets, using the same binary data-sets des
ribed



by Potter in [Potter and De Jong, 2000℄ and in[Hart and Ross, 2001℄. There are 3 datasets, the �rst
ontaining 2 
lusters, the se
ond 4 
lusters, and thethird 8 
lusters, identi�ed as half-s
hemas, quarter-s
hemas, and eighth-s
hemas respe
tively. The half-s
hema set is generated in equal proportion from 2s
hemas | in s
hema-1, the �rst L=2 bits of thes
hema are set to 1, the remainder to wild-
ards, ins
hema-2, the latter L=2 bits are set to 1, with the �rstL=2 bits set to wild-
ards. Similary, quarter-s
hemadata-sets are generated in equal proportion from 4su
h s
hemas, and eighth-s
hema data-sets from 8 su
hs
hemas. In ea
h 
ase, the results 
an be 
omparedagainst the mat
h that would be obtained by the bestpossible single string generalist, whi
h would always
onsist of a string 
ontaining all 1's, thus resultingin a mat
h-s
ore of (L=x) + (L�(L=x)2 ), where x is2,4 or 8 when using half, quarter or eighth s
hemadatasets respe
tively. The number of antigen in ea
hdataset is varied from 5 to 500, in steps of 50, and thelength of ea
h antigen string in ea
h 
ase is 64. Un-less stated otherwise, ea
h experiment is repeated 10times, and the SOSDM algorithm is applied for 200iterations. The quality of the algorithm is measuredby the mean re
alled a

ura
y, (see equation 10). Thenumber of 
entres in ea
h experiment was �xed beforethe experiment began, and remained stati
 through-out ea
h experiment, as the number of 
lusters inea
h dataset is known a priori. Results are 
omparedwith those of the 
o-evolutionary immune algorithmgiven in [Potter and De Jong, 2000℄ | this system isreferred to as CE-POTTER in the remainder of thispaper.4.6 Comparison of SOSDM Performan
e tothat of CE-POTTERInitial experiments were performed with t = 1:0 andI = 1:0. Thus, data is distributed to all 
entres withA = A� and to no others. (This is in dire
t 
om-parison to the Potter approa
h in whi
h data is onlydistributed to a single 
entre, with ties broken by ageof 
entre). The setting for I also ensures that 
ountersare adjusted maximally. The best re
all-a

ura
y ob-tained in ea
h of 10 experiments is re
orded, and theresults averaged. Figure 2 shows a plot of the results| 
learly SOSDM outperforms CE-POTTER for allsizes of antigen dataset and regardless of the numberof 
lusters. T-tests show that the mean re
alled a

u-ra
y obtained using SOSDM is statisti
ally signi�
antin every 
ase when 
ompared to the identi
al experi-ment using CE-POTTER.Examining the results in more detail shows that as the

number of antigen in
reases, the number of 
entres re-
eiving the maximum strength of a data-item in
reasesin all experiments. In small datasets, it is relativelystraightforward for the 
entres to distinguish betweenea
h 
luster. For very large datasets however, eventhough the data items nominally belong to separate
lusters, there is likely to be a large overlap betweenitems in ea
h 
luster, espe
ially as the length of the de-�ned se
tion 
hara
terising ea
h 
luster de
reases, andthe number of antigens generated from that s
hema in-
reases. Thus, the memory must generalise in order toa

urately re
all the large number of data-item, de-spite the fa
t that items nominally belong to a �niteset of 
lusters | this is a
hieved by allowing 
lustersto overlap. This e�e
t is mu
h more 
learly apparentin the quarter-s
hema and eighth-s
hema than it is forthose using half-s
hema.4.7 Performan
e vs Length of AntigenA se
ond series of experiments used datasets generatedfrom quarter-s
hema, this time of �xed size N=200antigens. The length of the antigen L in ea
h datasetwas varied from 40 to 1000 in steps of 40. The bestre
alled a

ura
y r was measured at the end of 200iterations of SOSDM, and the results averaged over 50trials. Figure 3 shows the results of these experiments;a 
omparison is made to the mean re
all a

ura
y thatwould be expe
ted using the best possible single stringgeneralist for ea
h value of L. The �gure shows a dire
t
orresponden
e between r and L | again, for everyvalue of L , the value of r ex
eeds that expe
ted usingthe single string generalist and this di�eren
e in
reasesas L in
reases.4.8 Performan
e of SOSDM vs Size ofDatasetExperiments were performed using datasets rangingin size from 500 antigen to 10,000 antigen in stepsof 500. All datasets were generated using 4 quarter-s
hema, and the mean re
alled a

ura
y of the entiredataset measured at the end of 200 iterations of the al-gorithm. Experiments were repeated 50 times in ea
h
ase. Figure 4 shows the performan
e of SOSDM vsthe size of of the dataset, with errorbars showing theminimum and maximum a

ura
y over the 50 exper-iments. Note that although there is a slight down-wards trend in mean re
alled a

ura
y r the value ofr is always signi�
antly greater than the result thatwould be obtained using the best possible string gen-eralist, whi
h would give r = 40. T-tests show whatthere is a signi�
ant di�eren
e (p > 0:99) in the valueof r obtained for N = 1000 and that obtained when
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Data No. Centres Average No. Average Re
all(original data) Centres using SOSDM A

ura
yhalf-s
hema 2 2.29 49.41quarter-s
hema 4 6.75 44.77eighth-s
hema 8 10.06 42.40Table 1: The table shows the average number of 
entres required and 
orresponding a

ura
y of re
all for
lustering data-sets with a dynami
 SOSDM algorithmN = 10; 000.5 Non-stationary DataIn order for SOSDM to operate in a truly unsupervisedmanner in a non-stationary environment, SOSDMshould be able to 
reate and delete 
entres in responseto the data it is exposed to, as generally the numberof 
entres required will not be known a priori. Themodel must also 
ontain a me
hanism for both addingand removing 
entres as appropriate, depedning on the
urrent state of the environment. In order to add 
en-tres to the model, a me
hanism is suggested in whi
hstagnation of the system is is dete
ted not in respe
tto re
all a

ura
y but in terms of movement of 
en-tres | if no movement of any 
entre has happenedover a �xed number of generations s (the stagnationthreshold) then a 
entre is added. The new 
entre isgenerated in a random position with its 
ounters ini-tialised to zeros. To delete 
entres that have be
omeobselete, the total strength of signal S re
eived by anode is 
ompared to the total signal that the nodehas been exposed to; if S is less than some prede�nedper
entage d (the deletion threshold), then the 
entreis deleted. However, a 
entre is allowed to exist forat least n epo
hs after 
reation in order to give it anopportunity to survive. Furthermore, a 
aveat is ap-plied that if a 
entre uniquely re
ognises at least oneantigen, then it is allowed to remain.6 ResultsA series of experiments was performed (see[Hart, 2002℄ for details) in whi
h SOSDM wasused to try and 
luster the half-s
hema, quarter-s
hema and eighth-s
hema data used throughoutthis thesis. Ea
h dataset 
ontained 200 antigens,and in ea
h experiment SOSDM was initialised with2 
entres. The stagnation threshold s is set to 10iterations, and the deletion threshold d was varied asdes
ribed below. At the end of ea
h experiment, thebest re
all a

ura
y and the 
orresponding number of
entres in the system are re
orded. Ea
h experiment

was run 100 times and the results averaged. Initialexperiments using the half-s
hema data showed thatthe a
tual value of the deletion threshold parameterd was unimportant in terms of the re
all a

ura
y thesystem a
hieved and the average number of 
entresused, however it had a large e�e
t on the numberof times 
entres were deleted from the system andthen subsequently re-added, hen
e a 
areful 
hoi
eis ne
essary in order to make the system eÆ
ient.Results to be reported elsewhere 
learly indi
ate thatfor this data, a large in
rease in the instability of thesystem o

urs when the deletion threshold rises above0:3. However, for all values of d, the system alwaysprodu
es its best results when the number of 
entresis on average 2, as desired. Experiments with thequarter-s
hema data and eighth-s
hema data wereperformed with d set to 0.25. The average numberof 
entres required to give the best re
all is shown intable 1.The number of 
lusters in ea
h 
ase is sensible | al-though the original data-sets were 
reated using 2,4and 8 s
hemas and hen
e nominally 
ontain the 
orre-sponding number of 
lusters, these 
lusters are some-what arbitrary. Re
all that the data is 
reated by ran-domly �lling in wild-
ards in a set of s
hemas, there-fore the formation of other 
lusters is likely, espe
iallywhen the de�ned length of the s
hemas is short. Thus,with the half-s
hema data, the data is most a

uratelyre
alled using 2 or 3 
lusters, 
losely mat
hing the orig-inal s
hemas, whereas in the eighth-s
hema data, morea

urate re
all is gained by using more than the 8 
lus-ters that the data was generated from.7 Results with Non-StationaryDatasetsThe experiments des
ribed in [Hart and Ross, 2001℄using the 
oevolutionary immune model were repeatedwith SOSDM. The experiments examined the perfor-man
e of SOSDM on a series of datasets in whi
h new
lusters are introdu
ed at regular time-intervals, re-pla
ing random 
lusters in the original data-sets, usingthe following pro
edure:
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ontinually exposed to a set of 100 anti-gen. The antigen are generated from s s
hemas. Ea
hs
hema 
onsists of a string of 64 bits, in whi
h 
 
on-tiguous bits are set to 1, with the start position ofthe 
 bits randomly 
hosen. All remaining bit po-sitions 
ontain wild-
ards. Antigen are generated inequal proportion from ea
h s
hema by randomly re-pla
ing wild-
ards with either 0 or 1. In order to gen-erate non-stationary data, the following pro
edure isfollowed. 100 antigens are generated at time t = 0from s s
hema. Every U time-steps, g s
hemas are
hosen at random and repla
ed by g new randomlygenerated s
hema. New antigens are generated fromthe new s
hema and repla
e those antigens generatedfrom the s
hema being repla
ed.9 sets of experiments were performed, in whi
h datasets were generated using 2; 5; 10 s
hemas of length 64bits, and the de�ned se
tion of ea
h s
hema was setto either 8,16 or 32 bits. For ea
h dataset 
ontaining
 
lusters, experiments tested the ability of SOSDMto respond to repla
ing 1; 2; ::; 
 
lusters at ea
h up-date, resulting in a total of 51 experiments. Figure5 shows a typi
al result of one of the experiments inwhi
h the dataset was generated from 5 s
hemas ea
hwith 8 de�ned bits, and in whi
h 
luster was repla
edat ea
h update. It is diÆ
ult to observe 
lear trendsin the results by varying either the number of 
lus-ters in the dataset or the number of de�ned bits ina 
luster. However, it is observed that in all but oneof the experiments, the average time lag for the sys-tem to return to its previous best level of �tness in-
reases as the number of updates in one experiment

in
reases. Also, it be
omes in
reasingly diÆ
ult forthe system to respond as the number of 
lusters beingrepla
ed in
reases. However, these experiments rep-resent an extreme test of the system | in real life,entire new 
lusters are unlikely to suddenly appear atthe same time as other 
lusters suddenly disappear,rather a more gradual pro
ess would o

ur. Methodsby whi
h the model 
ould be improved in this respe
tare 
urrently being investigated.8 Con
lusionThis paper has presented a new model for 
lusteringboth stati
 and non-stati
 data that is based on a 
om-bination of the ideas from both immunology and sparsedistributed memories. The model outperforms previ-ously published work on stati
 data-sets, and further-more, the results are shown to be s
alable with thesize of the data-set and with the length of the antigendata. An appealing feature of the model is the smallnumber of parameters to be set | there are just twoparameters and as yet unpublished work has shownthat �nding suitable settings for them is trivial. Whentested with non-stationary datasets, good peforman
eis observed | although performan
e degrades as thenumber of 
lusters repla
ed in
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Abstract 

 

The dynamic clonal selection algorithm 
(DynamiCS) was created to tackle the difficulties 
of anomaly detection in continuously changing 
environments (Kim and Bentley, 2002). This 
paper describes an extension to the original 
algorithm, involving the deletion of memory 
detectors that are no longer valid. Experiments 
are performed on the extended system and 
results are analysed. The results show a marked 
decrease in false positive errors produced by the 
system. 

1 INTRODUCTION 

A real computer network produces new network traffic 
continuously in real-time. Thus, normal behaviours of 
network traffic on one day can be different from normal 
behaviours of network traffic on another day.  Previous 
work (Kim and Bentley, 2002), introduced the concept of 
an artificial immune system (AIS) based on a dynamic 
clonal selection algorithm (DynamiCS) to tackle this type 
of problem. This system is capable of learning normal 
behaviours by experiencing only a small subset of self 
antigens at one time. Its detectors were designed to be 
replaced whenever previously observed normal 
behaviours no longer represented current normal 
behaviours. 

The results from experiments on this system (Kim and 
Bentley, 2002) showed that DynamiCS could 
incrementally learn the globally converged distributions 
even though only one subset distribution was given at 
each generation. This feature was achieved by employing 
three important parameters: tolerisation period, activation 
threshold and life span. However, DynamiCS could not 
learn new self-antigens when learned self and non-self 
behaviours suddenly altered due to legal self change. This 
resulted in high false positive (FP) rates when new 
antigens were monitored by DynamiCS, although it 
produced high true positive (TP) rates. The proposed 
explanation of this outcome was that the generated 
memory detectors had never been exposed to certain 

antigen clusters within their tolerisation periods. Thus 
they could not have tolerance against a complete self set.  

This paper investigates a further extension of DynamiCS, 
so that it can reduce FP rates increased by memory 
detectors. As one way to decrease the FP rates caused by 
memory detectors, the extended DynamiCS handles 
generated memory detectors based on their detection 
results. DynamiCS preserved memory detectors for an 
infinite lifespan. In contrast, the extended DynamiCS 
presented here kills memory detectors if they show poor 
self-tolerance to new antigens. This extended system is 
tested to see whether surviving memory detectors no 
longer cause seriously high FP error rates or not. From 
this test, an analysis is performed to understand whether 
any other problems occur as a consequence of killing 
memory detectors. This paper is organised as follows: 
section 2 introduces the summary of DynamiCS algorithm 
and experimental results showing the role of memory 
detectors in DynamiCS. Section 3 reviews human 
immune memory and artificial immune memory. Section 
4 presents the extended DynamiCS that adds the deletion 
of  memory detectors to DyanmiCS.  Section 5 finally 
concludes this paper. 

2 DynamiCS REVISITED 

2.1 ALGORITHM 

The new AIS introduced in (Kim and Bentley, 2002) 
follows the basic concept of the AIS proposed by 
Hofmeyr (1999). The adaptability of Hofmeyr’s AIS was 
achieved via co-ordinated dynamics of three different 
detector populations: immature, mature, and memory 
detector populations. In order to fully comprehend the co-
ordinated dynamics of these three detector populations in 
terms of AIS adaptability, we introduced an artificial 
immune algorithm, called the dynamic clonal selection 
algorithm (DynamiCS). Although Hofmeyr proposed 
various new features in order to effect great adaptability 
and distributed detection, DynamiCS attempts to distill 
only the crucial components that yield adaptability to the 
system (and reduce the number of system parameters to 
ensure the algorithm is usable). This section presents the 
algorithm of the previous version of DynamiCS so that 
comparison can be made to the new version of this 
algorithm.  



The following pseudo code provides an overview of the 
previous version of DynamiCS. DynamiCS starts by 
seeding initial immature detectors with random 
genotypes. DynamiCS then employs negative selection by 
comparing immature detectors to the given antigen set. As 
the result, immature detectors that bind to any antigens 
are deleted from the immature detector population and 
new immature detectors are generated until the number of 
immature detectors becomes the maximum size of the 
non-memory detector population. These same processes 
continue for the tolerisation period (T) number of 
generations. When the total number of generations 
reaches T, those immature detectors whose age reaches T 
(born at generation 1), become mature detectors. 

Initialise Dynamic Clonal Selection Algorithm 
Create an initial immature detector population with random detectors; 

 
Generation_Number = 1; 
Do  
{  
  If (Generation_Number = N) then Select a new antigen cluster. 
 Select 80% of self and non-self antigens from chosen antigen cluster;
  
 Reset Parameters 
       Generation_Number++;  Memory Detector Age++; 
       Mature Detector Age++; Immature Detector Age++; 
                                          
 Monitor Antigens 
 {    Monitor Antigens by Memory Detectors      
          Check whether any memory detector detects a non-self antigen;  
          Check whether any memory detector detects a self antigen; 
           
      Monitor Antigens by Mature Detectors    
          Check whether any mature detector detects a non-self antigen;  
          Check whether any mature detector detects a self antigen; 
          Create new memory detectors; 
          Old mature detectors are killed; 
       
      Monitor Antigens by Immature Detectors 
          Check whether any immature detector detects any self antigen; 
          Delete any immature detector matching any self antigen;  
          Create new mature detectors;       
 } 
 
  If (immature detector population size + 
      mature detector population size  
      < non-memory detector pop size) 
  {  
    Do 
       {  Generate a random detector; 
            Add a random detector to an immature detector population; 
       } Until  (immature detector population size +  
                     mature detector population size =  
                     non-memory detector pop size); 
  } 
} While (generation Number < max Generation) 

At generation T + 1, a new antigen set is presented to the 
mature detectors to be monitored. Whenever a mature 
detector matches an antigen, the match count of a mature 
detector increases by one. After all the given antigens 
have been compared to all the existing mature detectors, 
the system checks: i) whether the match counts of mature 
detectors are larger than a pre-defined activation threshold 
(A) and ii) whether the ages of mature detectors meet a 
pre-defined life span (L). If there is a mature detector with 
a match count that is larger than A, this mature detector 

becomes a memory detector only if it indeed detects an 
intrusion. When a human security officer acknowledges 
that this detector detects any intrusion signature 
(costimulation), the detector activates and eventually 
becomes a memory detector. In addition, if the ages of 
mature detectors meet L, those mature detectors are 
deleted from the mature detector population.  

At generation T + 2, when memory detectors match any 
antigen, confirmation is sought immediately from a 
human security officer. In this case, if the detected 
antigen patterns are confirmed as intrusion signatures, the 
detected antigen patterns are instantly deleted from the 
antigen set. After monitoring of new antigens by memory 
detectors, the remaining antigens are shown to mature 
detectors (if there are any). After the antigens have been 
monitored by the mature detectors, they are passed to 
immature detectors to perform negative selection. From 
generation T + 3 onwards, the same monitoring 
procedures that operated at generation T + 2 continue in 
order to monitor constantly changing antigen sets until the 
system terminates. For more detailed description about 
DynamiCS, readers are advised to refer to (Kim and 
Bentley, 2002) 

All experiments used the Wisconsin breast cancer data 
set. The cancer data has two classes, ‘Malignant’ and 
‘Benign’. The system treated ‘Malignant’ as non-self and 
‘Benign’ as self. In order to be sure of providing antigens 
of novel distributions, self and non-self antigen data was 
clustered into several groups using a clustering algorithm. 
The Expectation Maximization (EM) clustering algorithm 
was applied to cluster antigen data. The EM algorithm is 
widely-used as the basis for various unsupervised learning 
algorithms (Mitchell, 1997). We defined three as the 
number of generated clusters and this number was 
arbitrarily chosen. The EM algorithm divided the 240 
‘Malignant’ examples into three clusters of 45, 117 and 
78 examples, and the 460 ‘Benign’ examples into three 
clusters of 42, 355 and 63 examples. 80% of the self and 
non-self antigen data belonging to each cluster were 
randomly selected for N generations. Here, 80% was 
arbitriarily selected. Therefore, DynamiCS was provided 
with different antigen data at each generation and the 
distributions of these data changed at every N generations. 
The costimulation mechanism involving a security officer 
was implemented by simply increasing the match count 
only when a detector detects non-self antigens. 

2.2 DYNAMICS EXPERIMENTS 

The experiments in previous work (Kim and Bentley 
2002) simulated a situation in which converged 
behaviours learned in an incremental way are suddenly 
altered due to legal self change. The results of these 
experiments showed that a value of T which was 
sufficiently large to show perfect FP rates no longer 
demonstrated satisfactory FP rates. More precisely, four 
experiments were performed when four different values, 
{5, 10, 20, 30}, were given to N: the number of 
generations that antigens are selected from a same cluster. 



In these four experiments, it was observed that the overall 
TP’s and FP’s increase as N grows. Particularly, when N 
is as large as a given T, which is tolerisation period, the 
obtained FP rates reached high values greater than 0.3.  
The inference from this result was that some memory 
detectors have never been exposed to a certain antigen 
cluster, and thus those memory detectors caused high FP 
rates. For this reason, the extension of DynamiCS 
introduced in this paper will handle generated memory 
detectors based on their detection results.  

Before introducing the extended DynamiCS, another set 
of experiments was performed by giving different values 
for A, the activation threshold of a mature detector, but 
using smaller values than the ones used in (Kim and 
Bentley 2002). For consistency of experiments throughout 
this paper, another four experiments were performed with 
the parameter values shown in table 1.  

 

Table 1. Parameter values used for DynamiCS experiments 

Figure 1 illustrates the results of these four experiments. 
The experiments were run five times and average results 
of five runs are shown in figure 1. The X-axes of these 
graphs represent the number of generations and the Y-
axes indicate detection rates.  Each graph has two lines, 
one displaying a True Positive (TP) rate and another 
showing a False Positive (FP) rate. The grid lines on the 
X axis were placed at every N generations for N = 30. 
Each experiment was run for a maximum of 2000 
generations.  
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Figure 1. TP and FP rates when A varies and T = 30, L = 10, 
N =30 

Figure 2. TP and FP rates when A varies and T = 30, L = 10, 
N =30 without memory detectors 

Parameters Values 

Tolerisation Period (T) 30 

Life Span of Mature Detectors (L) 10 

Activation Threshold of Mature Detectors (A) {5, 10, 20, 40} 

Number of Generations that Antigens are 
Selected from the Same Cluster (N) 

30 



It has been already seen that large A can prevent self 
antigen detection to some extent in (Kim and Bentley 
2002). The results shown in figure 1 also follow the same 
consequence: large A reduces very high FP. Nevertheless, 
it still shows unacceptably high FP rates, around 0.5, even 
though FP rates dropped by nearly half when A = 40. This 
implies that the memory detectors which detected non-
self antigens were not sufficiently self-tolerant.  

However, there are two types of detector that are qualified 
to detect antigens: memory detectors and mature detectors 
that have just activated. Although it was inferred from 
previous experimental results that memory detectors 
which have never been exposed to a certain antigen 
cluster could cause high FP rates, it has not been shown 
yet whether memory detectors or mature detectors that 
have just activated are the actual cause of this problem. In 
order to clarify this issue, another set of experiments was 
performed. In the new experiments, DynamiCS did not 
generate memory detectors. When mature detectors 
activated, they produced detection signals but they were 
not converted into memory detectors. Instead, they simply 
died off. As the result, antigen detection was performed 
only by activated mature detectors in the absence of 
memory detectors. Figure 2 shows these new 
experimental results. The four important parameters, T, A, 
L, and N, have identical values to those used in the 
experiments above and they are summarised in table 1. 

The four experimental results in figure 2 display similar 
outcomes regardless of A values: low TP and FP rates. 
This verifies the important role of memory detectors. 
They indeed contribute to increase TP rates by detecting 
re-encountering antigens. Without memory detectors, TP 
rates of DynamiCS fluctuate irregularly within an 
unsatisfying range (between 0.1 and 0.8). The low FP 
rates revealed in figure 2 also imply that the high FP rates 
shown in figure 1 are originated from detection by 
memory detectors. 

The results exhibited in figure 2 makes it clearer that 
DynamiCS needs an appropriate way to handle memory 
detectors. In order to propose a new way of handling 
generated memory detectors, the next section briefly 
introduces how the human immune system maintains 
lifetime lasting memory while it continues to sustain self-
tolerance. It also presents the method used to ensure that 
these human mechanisms have been implemented in 
available AIS’s, in order to acquire artificial immune 
memory. 

3 RELATED WORK: HANDLING 
MEMORY DETECTORS 

3.1 HUMAN IMMUNE MEMORY 

Immunologists define immune memory as the capability 
of the immune system that can fully protect the body from 
the re-attack of pathogens, which have previously been 
detected. Immune memory is long-lived, often lasting for 
many years, even for the lifetime of an individual (Tizard, 

1995). The life–long immune memory means that a quick 
immune response to reappearing pathogens lasts for the 
lifetime despite constant and unpredictable generation of 
new memory cells, triggered by new antigen detection. 
Experimental observation showed that the memory cell 
population is maintained at a roughly constant size within 
an individual’s body for his or her lifetime from puberty 
onwards (Yates and Callard, 2001), although there is 
gradual addition of new memory cells in old age. These 
two observations have raised a question of how the 
immune system maintains a roughly constant size of 
memory detectors while it continues to maintain immune 
memory of various types of pathogens that occur during a 
lifetime.   

Several pieces of research by different immunologists 
attempted to explain the immune memory mechanism 
from various angles. For instance, one theory by Mackay 
(1993) explained this by showing the life-long lifespan of 
memory cells and another theory (Matzinger, 1994) 
described immune memory being provoked by constant 
re-stimulation of memory cells by reappearing antigens. 
In contrast to these theories, there is an observation of 
maintaining a roughly constant amount of memory cells 
in the absence of repeated exposure to antigens or cross-
reactive stimulation (Yates and Callard, 2001). Yates and 
Callard showed that a small minority of memory cells are 
susceptible to programmed death triggered by contact 
with other memory cells. Especially when memory T-
cells proliferate, matching the receptors of other T 
memory cells triggers signal cascade leading to 
programmed death of T memory cells. This theory 
showed that the regulation of a stable population of 
memory cells is achieved in absence of antigen 
stimulation.  

These two interpretations can be combined together into 
one abstract explanation, which is the idiotype based 
immune network theory proposed by Jerne (1974). 
Immune network theory emphasises that the continuous 
chain of stimulation by antigens and suppression by other 
antibodies can form a large-scale network, and the final 
equilibrium status between suppression and stimulation 
determines the overall internal memory of the immune 
system. Therefore, the stabilised immune network 
constructed by proliferation by antigens and suppression 
by other antibodies constitutes a converged memory cell 
population.  

Likewise, many studies in immunology approached the 
understanding of how to maintain a converged memory 
cell population as one step towards finding an explanation 
of lifetime lasting immune memory. Although there is no 
clear answer yet, the common explanation from these 
studies is that a memory cell population stabilises through 
constant death of existing memory cells, recruitment and 
proliferation of new memory cells. That is to say that a 
roughly constant size of memory cells is maintained not 
by keeping memory cells in a static way, but by 
continuous loss and new birth of memory cells in a 
dynamic way. 



Although these studies illustrated how a stabilised 
memory cell population is maintained, they did not 
clearly explain how a stabilised memory cell population 
also maintains robust memory against various types of 
antigens and how it shows the associative property. The 
study by Smith et al. (1996) has attempted to explain the 
associative property of immune memory using Sparse 
Distributed Memory (SDM). SDM was originally 
introduced by Kanerva (1988) in order to store a very 
large number of data items into a memory space, which is 
mapped to a smaller number of physical data addresses. It 
approximately addresses given data items to a memory 
space when data is written. This means that the data item 
is recalled by an address sufficiently similar, but not 
necessarily equal, to the original address. This 
approximate addressing maps sparse and distributed 
physical addresses to logical addresses that is much more 
dense than existing physical addresses. Smith et al. (1996) 
took the view that distributed scattered physical addresses 
in SDM has an equivalence with memory cells in a 
stabilised memory cell pool, and that the approximated 
recalling mechanism of SDM is also equivalent to the 
primary and secondary responses of memory cells. 
Consequently, Smith et al. (1996) claimed that immune 
memory is robust and associative, as is SDM, since both 
employ a similar approximate addressing mechanism.   

3.2 ARTIFICIAL IMMUNE MEMORY 

The immune memory of the human immune system has 
been implemented in various ways in different AIS’s. The 
common feature of these implementations is that the 
immune memory was achieved in an implicit way without 
having a separate memory detector/antibody population 
(Dasgupta, 1998; Timmis, 2001). Rather, only one type of 
antibody population was used and the antibody population 
was usually maintained at a constant size. That is to say 
that the antibody population was maintained through 
constant death of existing antibodies and recruitment and 
proliferation of new antibodies. During this process, naïve 
antibodies (i.e. newly generated) and a surviving antibody 
antibodies (i.e. memory antibodies) remain in the same 
antibody population and compete with each other for 
survival. Unlike the human immune system, where there 
are two different types of immune cell population (a 
memory cell and non-memory cell pool) and the 
competition between immune cells is only within each 
type of population (Yates and Callard, 2001), these AIS’s 
did not label memory cells separately and thus they 
compete with other maturing and naïve immune cells for 
survival.  

Among the AIS’s which use only one antibody 
population, immune network theory has been a popular 
approach to make immune memory emerge by itself 
within an AIS (Timmis, 2001; Farmer et al., 1986; Varela 
et al., 1988). The AIS’s employing the network theory 
formed the immune network as the result of immune 
pattern recognition. The specific shape of the immune 
network described the immune memory of the given 
immune system. The memory that emerges, which is a 

stabilised network structure, was also used to handle a 
dynamic environment. When a new antibody is generated 
and inserted into already formed immune network, this 
new antibody competes with other ones that are already in 
the network. The new network formed by the surviving 
antibodies is expected to provide a new solution to a new 
environment without losing the solutions to the previous 
environment. This was possible because the AIS decides 
on surviving antibodies in the network not only by their 
antigen stimulation level but also by their antibody 
suppression level. Although some antibodies did not 
receive a sufficient degree of stimulation from new 
antigens, they would not be deleted as long as they were 
not the subject of large suppression from other antibodies. 
These antibodies can remain and act as memory cells in 
the AIS. 

Another type of immune memory employed for AIS’s is 
SDM (Smith et al., 1996).  Hart and Ross (2001) adopted 
SDM in their co-evolutionary GA to cluster moving data. 
Immune memory was not explicitly implemented as a 
separate antibody population in either work. Instead, the 
SDM was used for antibody and antigen matching and 
recall. It lets each antibody vote (i.e. match and recall) 
several antigens instead of one antigen. Thus, when a new 
antigen is presented, the democratic result from all 
antibodies decides the label of the antigen, whether self or 
non-self. This kind of antibody and antigen matching and 
recalling mechanism showed an implicit immune memory 
feature by allowing one antibody to match more than one 
antigen.  

Another work by Gaspar and Collard (1999) investigated 
an artificial immune system for a time dependent 
optimisation (TDO) problem. Their simple artificial 
immune system (Sais) was implemented by adding 
several immune system features (such as clonal selection, 
immune network theory, hypermutation) to a 
conventional GA. In this work, Gaspar and Collard have 
shown what affected system robustness, obtained through 
immune memory. Robustness is the ability to maintain 
diverse optima without losing previously encountered 
optima. This feature was expected to allow the system to 
provide solutions quickly when previously presented 
optimal functions are later given as targets. The 
experimental results illustrated that Sais showed stronger 
robustness than other types of GA. The stronger 
robustness of Sais was achieved by memorising 
previously found optima using idiotoype immune network 
selection. However, the good improved robustness 
resulting from the memory of previously encountered 
optima, was not maintained as the number of different 
optimisation targets increased.  

In contrast to above approaches, Hofmeyr’s AIS (1999) 
adopted a separate memory detector population that was 
isolated from other detector/antibody populations. 
Memory detectors in Hofmyer’s AIS also had two 
significant features: quicker response and infinite life 
span. This system is the only AIS to provide immune 
memory by directly mimicking the memory cells of the 
human immune system. Immune memory was no longer 



maintained implicitly in this system. Instead, it had 
explicit antibodies to retain memory of previously 
detected antigens, and these antibodies were treated 
differently from other antibodies. Although the initial life 
spans of memory antibodies were set to be infinite, they 
could be deleted when the number of existing memory 
antibodies reached the pre-defined maximum number. If 
the number of memory detectors was more than this 
number, randomly selected memory detectors were killed 
until the number of current memory detectors, including 
the newly generated memory detectors, reached the 
maximum number of memory detectors.  

This section has introduced three different types of 
artificial immune memories: those based on network 
theory, SDM and an explicit memory population. Among 
them, an explicit memory population seems to have an 
advantage over the two types of implicitly emerging 
immune memory. As reported in Gaspar and Collard’s 
work (1999), the AIS without an explicit memory 
population failed to maintain its memory when the 
number of required antibodies grew in order to cover all 
the existing niches in a solution space. This was because 
these antibodies competed with newly generated 
antibodies that were more stimulated by current antigens. 
It might always be more likely for new antibodies to 
dominate antibodies memorising past antigens, since their 
antigen stimulation level is always higher than the 
memory antibody’s antigen stimulation level. When the 
number of required antibodies is not large, they can still 
remain in the antibody population alongside the new 
antibodies. However, when the number of required 
antibodies grows, they cannot always remain in the 
antibody population and thus the AIS prefer currently 
stimulated antibodies to other memory antibodies. Thus, 
some memory antibodies will be lost. On the other hand, 
memory antibodies in an explicit memory population do 
not compete with new antibodies and thus memory 
antibodies would not be lost as the expense of space for 
new antibodies. To benefit from this advantage, 
DynamiCS uses an explicit memory population to 
maintain memory detectors.  

Although this work has extensively studied how the 
human immune system maintains its immune memory 
and also how AIS’s obtain their memory, it is not very 
clear how either of these systems stop self-detection of 
previously generated memory detectors. However, there is 
still one suggestion from this study that can be directly 
used: replacing memory detectors. As Yates and Callard 
(2001) have shown, memory detectors are constantly 
replaced while the population size is roughly constant. 
Following this understanding, the extended DynamiCS 
constantly replaces memory detectors. The next section 
describes one approach to replacement of memory 
detectors, via memory detector costimulation.   

4 EXTENDED DYNAMICS: KILLING 
MEMORY DETECTORS 

4.1 ALGORITHM DESCRIPTION 

All the generated memory detectors in DynamiCS have 
infinite life span and an activation threshold of one. 
However, this is quite different from what really happens 
to memory cells in the human immune system. Although 
memory cells have a much lower activation threshold and 
a longer life span than other maturing cells, the memory 
cell population stabilises through constant death of 
existing memory cells, recruitment and proliferation of 
new memory cells. The infinite life span of memory 
detectors adopted by DynamiCS is not a biologically 
inspired idea. Thus, instead of giving an infinite life span 
to generated memory detectors, the extended DynamiCS 
kills memory detectors based on their current detection 
results. If antigens that are newly detected by memory 
detectors turn out to be self-antigens, these memory 
detectors are deleted from the memory detector 
population. This modification mimics the costimulation of 
memory detector detection. To be precise, whenever a 
memory detector in the memory detector population 
detects any antigen, it asks for confirmation about 
whether the detected antigen is self or non-self from a 
human officer. It sends a detection signal only if the 
human officer confirms that the detected antigen is non-
self, otherwise it is deleted. Thus, the extended 
DynamiCS deletes harmful memory detectors by applying 
costimulation to memory detectors as it does to activating 
mature detectors.  

4.2 EXTENDED  DYNAMICS EXPERIMENTS 

Four different experiments were performed to test 
whether the extended DynamiCS can reduce the high FP 
rates observed in the previous experiment. The extended 
DynamiCS was set with the same parameter values used 
in the experiments reported in 7.3 DynamiCS Revisited 
and they are summarised in table 1.  

Figure 3 illustrates the results of four different 
experiments. These results can be compared to those in 
figure 1. Regardless of A, all of these four results show 
reasonably low FP rates, which are mostly lower than 0.1. 
This outcome is clearly different from the ones seen in 
figure 1, which has much higher FP rates and was much 
more sensitive to various A values. In figure 1, as A 
increases, the FP rates drop rapidly. In contrast, the 
changes of the FP rates in figure 3 are not clearly 
noticeable depending on various A values. In addition, the 
TP rate changes found in figure 1 and figure 3 are quite 
different. The TP rates shown in figure 3 decrease to a 
much greater extent compared to the TP rate changes 
observed in figure 1. In summary, as A increases, the 
amount of FP rate drop is much larger in the experimental 
results of original DynamiCS, while the degree of TP rate 
fall is much larger in the experimental results of the 
extended DynamiCS. 
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Figure 3. TP and FP rates when A varies and T = 30, L = 10, N =30 after killing memory detectors 

 

Table 2. Average Number of Surviving, Generated and 
Deleted Memory Detectors per generation for DynamiCS 
and Extended DynamiCS. The values in parentheses are 
variances. 
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A=5 75.75 
(8.2) 

75.75 
(8.29) 

0 46.5 (3) 205.5 
(8.03) 

159 
(8.33) 

40.89 
(4.48) 

A=10 
49.5 

(5.7) 

49.5 

(5.7) 
0 32.75 

(18.25) 
124.25 
(50.69) 

91.5 
(33.77) 

29.36 

(6.28) 

A=20 
33.5 

(1) 

33.5 

(1) 
0 24.25 

(14.25) 

78.75 

(5.62) 
54.5 

(3.83) 

20.39 

(8.35) 

A=40 
20.5 

(1.67) 

20.5 

(1.67) 
0 

14.5 

(1.67) 

55.25 

(4.09) 
40.75 
(5.02) 

16.43 

(11.76) 

 

These different effects explain how useful memory 
detectors in each system are for detecting new non-self 
antigens without mistakenly detecting self antigens. In the 
original DynaimCS, there are some memory detectors that 
detect self-antigens mistakenly and thus cause high FP 
rates. The generation of these memory detectors was 
prevented to some extent by restricting the conditions that 
allow mature detectors to be memory detectors. A large 
value for A in original DynamiCS did this job, and the 

large FP rate drop in figure 1 was obtained due to large A. 
Nevertheless, it has not yet gained satisfactory FP rates 
with a quite large value, 100, for A and also large A 
caused TP rates to decline. In contrast, for extended 
DynamicCS, memory detectors that caused high FP rates 
could not survive and thus FP rates were consistently low 
regardless of A’s value. Extended DynamiCS only kept 
memory detectors that were useful for detecting non-self 
antigens without detecting self antigens. For the same 
reason, large A reduced the number of useful memory 
detectors and it resulted in lower TP rates. 

Furthermore, the new strategy of the extended DynamiCS 
affects detection of non-self antigens. Compared to the 
original DynamiCS, it is much harder for memory 
detectors to survive in the extended DynamiCS. Table 2 
shows the total number of surviving, generated and 
deleted memory detectors for a total of two thousand 
generations. These numbers are averaged across five runs. 
Thus, the average numbers of surviving memory detectors 
are smaller than the ones in DynamiCS when the same 
values are given to other parameters (see table 2). 
Consequently, the extended DynamiCS gains higher TP 
rates when it has a more relaxed condition for the 
activation of mature detectors, as in the cases having 
small values for A (see figure 3). Thus, the extended 
DynamiCS was able to obtain high TP rates and low FP 
rates when it had a small value for A. 

However, there is another issue to be concerned with in 
the application of the extended DynamiCS for intrusion 
detection. Since the extended DynamiCS cured a problem 
of DynamiCS by applying costimulation to memory 
detectors, and costimulation was implemented in 
extended DynamiCS by asking for confirmation from a 



human security officer, the large number of memory 
detector costimulations can hinder the adoption of the 
extended DynamiCS. Too much requirement for human 
intervention could render the extended DynamiCS 
useless. Thus, an effective IDS always requires the lowest 
frequency of costimulation per generation, leading to the 
least requirement for human intervention. 

The amount of memory detector costimulation per 
generation governs the maximum number of activating 
detectors that will ask for detection confirmation from a 
security officer. Thus, it can be defined as the number of 
existing memory detectors per generation plus the number 
of mature detectors that have just activated (i.e. that just 
became memory detectors) per generation. The average 
numbers of memory detector costimulations per 
generation are shown in table 2. Although it is preferred 
for the extended DynamiCS to have smaller value of A 
because it leads to higher TP rates while sustaining low 
FP rates, this case tends to have larger number of memory 
detector costimulations. Thus, this approach,  obtaining 
high TP rates and low FP rates by having small A values, 
does not seem to be ideal. Instead, these results suggest 
that large A can be more favourable than the case with 
small A if it can maintain a satisfactorily high TP rate. 
The experimental results require the extended DynamiCS 
to have a procedure to increase TP rates while it sustains a 
smaller number of memory detector costimulations. As 
one approach to this,  future work investigates applying 
hypermutation for gene library evolution, as observed in 
the human immune system. 

5 CONCLUSION 

The experimental results in the previous work verified 
that DynamiCS could not learn new self-antigens when 
learned self and non-self behaviours are suddenly altered 
due to legal self change (Kim and Bentley, 2002). This 
resulted in high FP rates when new antigens were 
monitored by DynamiCS, although it produced high TP 
rates. The proposed explanation of this outcome was that 
the generated memory detectors had never been exposed 
to a certain antigen cluster within their tolerisation 
periods. Thus they could not have a sufficient degree of 
tolerance against a complete self set. For tackling this 
problem, this paper investigated a further extension of 
DynamiCS, so that it can reduce FP rates increased by 
memory detectors.  

As one way to decrease the FP rates caused by memory 
detectors, DynamiCS was extended by eliminating 
memory detectors when they showed a poor degree of 
self-tolerance to new antigens. This extended system was 
tested to see whether surviving memory detectors no 
longer cause seriously high FP error rates or not. The test 
results showed that deletion of memory detectors based 
on their self-antigen detection dramatically decreased 
high FP rates that were observed in the previous paper. 
However, this method required a larger amount of 
costimulation in order to gain such benefits. The large 
amount of costimulation indeed can render the system 

weak for intrusion detection. This disadvantage demanded 
a further extension of DynamiCS. 

In order to resolve this problem, further work studies the 
use of hypermutation to simulate gene library evolution. 
This additional extension is described in the sister paper 
to this paper, entitled: A Model of Gene Library Evolution 
in the Dynamic Conal Selection Algorithm. 
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Abstract 
 
A new version of an artificial immune system 
designed for automated cluster formation in 
training data is presented. The algorithm fully 
exploits self-organizing properties of the 
vertebrate immune system and produces stable 
immune network. The algorithm uses the 
minimal number of control parameters.   

1   INTRODUCTION 
Artificial Immune System, or AIS, is a new, biologically 
inspired, paradigm of information processing. Its main 
principles are abstracted from the behaviour and 
properties of the vertebrate immune system, which is 
responsible for maintaining homeostasis of a living 
organism and particularly for protecting the organism 
from pathogens that could disrupt that homeostasis. More 
precisely, the immune system is a multi-layered structure. 
Each layer is of different complexity and the most 
complex is so-called adaptive immune system – consult 
(Hofmeyr, 2001) for details. In this paper by “immune 
system” we will understand the adaptive immune system. 
From a computer science perspective this last layer is a 
complex, self organizing and highly distributed system 
which has no centralized control and which uses learning 
and memory when solving particular tasks. The learning 
process does not require negative examples and the 
acquired knowledge is represented in explicit form.  
The main actors of the adaptive immune system are B-
lymphocytes (or B-cells) which mature in bone marrow, 
and T-lymphocytes (or T-cells) which mature in thymus. 
B-cells can be viewed as the commandos equipped with 
specialized weapon (i.e. antibodies attached to a single B-
cell surface); each type of weapon is designed to fight 
different kind of enemy (i.e. pathogen or more precisely: 
antigen). B-cells can start their attack only after receiving 
signal from their commanders, i.e. subspecies of T-cells 
called helper T-cells, or Th-cells.  
Thus, from a computer science point of view, Th-cells are 
responsible for Self/Non-self discrimination and the 
mechanisms governing Th-cells behaviour are used for 

designing novelty detection algorithms which can be used  
e.g. in the detection of computer viruses, or anomaly 
detection – consult (Dasgupta, 1999) for details. The 
“algorithms” used by B-cells (and reviewed in Section 2) 
are useful in adaptive data analysis, (Timmis, 2000), (De 
Castro and von Zuben, 2001), machine learning (Hunt and 
Cooke, 1996) or function optimisation (Bersini, 1990).  
In this paper a new algorithm for adaptive clusters 
formation is given. Mentally based on the idea developed 
by Timmis (2000) the algorithm almost does not require 
control parameters and produces stable, long lived 
clusters. Section 3 describes this new algorithm and 
Section 4 contains numerical examples. Some general 
properties of the algorithm are discussed in Section 5.   
A reader interested in models used in theoretical 
immunology is referred to the paper (Perelson and 
Weisbuch, 1997). 

2   IMMUNE PRINCIPLES  
Perhaps the first paper announcing exciting properties of 
the immune system was that of Farmer, Packard and 
Perelson (1986). As noted by Timmis (2000), the model 
described in this paper has shown how to use immune 
mechanisms in designing computer learning systems by: 
(i) using the idea of idiotypic network to achieve memory 
of what is being learnt, (ii) using a simple pattern 
matching mechanism between B-cell and antigen to 
define affinity, (iii) only representing B cells in the model 
and ignoring the effect of T cells, (iv) using a simple 
equation to model the stimulation of the B-cell, and (v) 
using mutation mechanisms to create diverse set of B 
cells. Let us briefly describe main mechanisms engaged 
during the immune response.  
A single B-cell has about 105 receptors (antibodies) 
located on its surface. Each receptor has a specialized 
region, called paratope, used for identifying other 
molecules. Being a 3-D structure with uneven surface the 
paratope have a unique shape and other unique 
characteristics (e.g. van der Waals forces) referred to as 
the specificity. The regions on any molecule that the 
paratopes can attach to are called epitopes. If the two 
colliding molecules have complementary specificities, 



they bind to each other and the strength of the bond 
(called affinity) depends on the degree of 
complementarity. A molecule bound by an antibody is 
referred to as the antigen1. A crucial role of the immune 
system is the binding of antibodies with antigens which 
serves to tag them for destruction by other cells. This 
process is termed antigen recognition. To treat formally 
the recognition problem, Perelson (1989) introduced the 
notion of the shape space. Namely, if there are m features 
influencing the interaction between the molecules (i.e. the 
spatial dimensions, charge distribution, etc.) and Di is the 
domain of i-th feature (i = 1, …, m) then each molecule is 
reduced to a point (the generalized shape of a molecule) 
in m-dimensional space (S = D1 × … × Dm. Typically S is 
a subset of m-dimensional Hamming space, or m-
dimensional Euclidean space. 
When a B-cell recognizes an antigen, it clones (i.e. 
produces identical copies of itself) as well as secretes free 
antibodies. The process of amplifying only those cells that 
produce a useful antibody type is called clonal selection, 
and the number of clones produced by a lymphocyte is 
proportional to its stimulation level. Clones are subjected 
to somatic mutation (characterized by high mutation rate) 
that results with new species of B cells having slightly 
different antibodies. These new B cells also bind to 
antigens and if they have a high affinity to the antigens 
they in turn will be activated and cloned. The rate of 
cloning a B-cell is proportional to its “fitness” to the 
problem: fittest cells replicate the most. The somatic 
mutation guarantees sufficient variation of the set of 
clones, while selection is provided by competition for 
pathogens. The whole process of (in fact: Darwinian) 
selection and differentiation of B-cell receptors leading to 
the evolution of B-cell populations better adapted to 
recognize specific epitopes is said to be affinity 
maturation.  
Besides somatic mutation the immune system uses a 
number of other mechanism to maintain sufficient 
diversity and plasticity. Particularly about five percent of 
the B-cells are replaced every day by new lymphocytes 
generated in the bone marrow. This process is termed 
apoptosis.   
The immune system possesses two types of response: 
primary and secondary. The primary response occurs 
when the B cells meet the antigen for the first time and 
reacts against it. To learn the structure of the antigen 
epitopes, clonal selection and somatic mutation are used. 
The primary response takes some time (usually about 3 
weeks) to destroy the antigen. If the organism is 
reinfected with a previously encountered antigen, it will 
have an adapted subpopulation of B-cells to provide a 
very specific and rapid secondary response. From a 
computer science perspective the primary response 
corresponds to the identification of clusters in the training 
data, while the secondary response – to the pattern 
recognition problem, i.e. the assignment of a new data 

                                                           
1 Antigen is a shorthand of antibodies generation. 

into one of existing  clusters. Interestingly, the secondary 
response is not only triggered by the re-introduction of the 
same antigens, but also by infection with new antigens 
that are similar to previously seen antigens. That is why 
we say that the immune memory is associative. This 
phenomenon is modelled in the shape-space formalism by 
introducing so-called recognition ball, i.e. a ball Br with 
radius r and centred in the point corresponding to the 
generalized shape of a given antibody. 
The final immune system principle that plays a useful role 
in designing AIS’s is that of immune network theory 
formulated by Jerne (1974), and further developed by 
Perelson (1986). According to this theory (called also 
Jerne’s hypothesis) the immune response is based not 
only on the interaction of B-cells and antigens but also on 
the interactions of B-cells with other B-cells. These cells 
provide both a stimulation and suppression effect on one 
another and it is partially through this interaction that the 
memory is retained in the immune system.  
The immune system is in permanent flux. The whole 
network is subjected structural perturbations through 
appearance and disappearance of some cell species. The 
introduction of new species is caused by somatic 
mutation, apoptosis, or combinatorial diversity (e.g. 
genetic operations used to produce new paratopes). A 
crucial issue is the fact that the network as such, and not 
the environment, exerts the greatest pressure in the 
selection of the new species to be integrated in the 
network.  Thus, the immune network is self-organizing, 
since it determines the survival of newly created clones, 
and it determines its own size. This is referred to as the 
meta-dynamics of the system, (Varela and A. Coutinho, 
1991).  
The two most influential data analysis systems based on 
the immune metaphor are aiNet (De Castro and von 
Zuben, 2001) and AINE (Timmis, 2000). In both the 
systems the training set is identified with the set of 
antigens and the aim is to produce a set of B cells or 
antibodies representing these antigens.  
According to Jerne’s hypothesis, AINE produces 
networks (counterparts of idiotypic network) describing 
the key features of data items within the training set. The 
system uses almost all mechanisms described in this 
section, i.e. (i) it uses a set of B cells each of which is 
capable of recognizing antigens, (ii) similar B cells are 
linked together; these links form a network of B cells, (iii) 
clonal selection and hypermutation are performed on B 
cells, (iv) a number of B cells can be represented by an 
artificial recognition ball, or ARB. In fact, to improve 
stability of the immune network, AINE uses a population 
of ARBs and not the population of B cells. It needs four 
important control parameters: network affinity threshold 
(NAT), the mutation rate, the number of ARBs and the 
number of clones produced by a stimulated ARB. The 
influence of these parameters on final network is analysed 
in (Knight and Timmis, 2001). 
The aiNet system, on the other hand, uses simplified 
representation: instead of B cells or ARBs it simply 



develops a population of antibodies. The population is 
initialised randomly (while AINE uses a random subset of 
antigens) and next it is modified by clonal selection, 
hypermutation and apoptosis. Interesting feature of the 
algorithm is that the clonal selection controls the network 
dynamics and metadynamics. Its main drawback is large 
number of user-defined control parameters. Further to 
obtain the immune network we have to use standard 
clustering tools: hierarchical clustering and graph-
theoretic algorithms. But its advantage is very concise 
description of training data. In some cases such a data 
reduction equals 90% (Wierzchoń, 2001). 
Both the algorithms are examples of unsupervised 
machine learning algorithms. Watkins (2001) used a 
combination of the just described approaches to design 
supervised learning algorithm. His aim was to develop a 
predictive model based on input data and the known 
classes in the data set.  
To finish this section, let us note that the model of 
immune memory proposed by Jerne resembles the models 
of hypercycles or autocatalytic sets considered in the 
context of prebiotic chemical evolution – cf. (Bagley and 
Farmer, 1992) or (Eigen, 1971). It seems that careful 
examination of these models may be of value in 
constructing effective data analysis. 

3   A NEW ALGORITHM 
As stated in previous section, natural immune system 
contains B-cells with antibodies attached to their surfaces.  
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antigens. Each element y ∈ {Ab, Ag} is m-dimensional 
real-valued vector y = {y1, …,ym}. 
The algorithm depicted on Figure 1 creates an AIN in the 
way similar to that used in (Timmis, 2000) but with some 
significant modifications. The nodes of the AIN represent 
antibodies, and their aim is representation of generalized 
characteristics of the antigens. Connected antibodies form 
clusters, so if any antibody from the cluster recognizes an 
antigen, it means the antigen belongs to this cluster. 
Recognition of an antigen, ag, by antibodies relies upon 
searching for an antibody ab* that minimizes Euclidean 
distance d(ag, abi), i = 1, …, n. The inverse of d(ag, abi), 
can be viewed as the affinity of ag to abi. Thus the smaller 
the distance d(ag, ab*) the better representation of ag by 
ab* is. The maximal length of an arc joining two nodes in 
the AIN is just the NAT scalar. Cells (antigens and 
antibodies) located further than NAT do not influence one 
another. The NAT parameter determines the granularity of 
the network and its overall connectivity (Knight and 
Timmis, 2001). 

3.1     INITIALIZATION OF THE AIN 
Like in (Timmis, 2000) this process is divided into three 
stages. First, the training data are normalized, i.e. the set 
Ag becomes a subset of m-dimensional unit cube [0, 1]m. 
The second stage is to calculate an initial NAT value 
using the Ag set. Timmis calculates it as <d>⋅α, where 
<d> is the average distance between each item in Ag and 
α ∈  (0,1〉 is a constant. Such computed parameter  was 
fixed during whole process of network creation. However 
such a procedure requires several runs of the algorithm 
and necessity of choosing the best value. In our approach 
the NAT value is computed in every iteration of the 
algorithm without external intervention. Initial NAT value 
is computed as follows. Let  

Initialization 

D = {d(agi, agj): i = 1,…, k-1,  j = 2, …, k, j > i}  
be the set of distances values between each unique pair of 
antigens. Sort ascending the elements of D and denote  
D’ = {d1, … dl}        (1) 
a subset of D consisting of l ≤ k⋅(k – 1)/2 initial elements. 
Now the NAT is computed as the average value of the 
distances in the set D’. The third stage is to construct 
initial immune network. That is the set of antibodies Ab 
(also a subset of [0, 1]m) is randomly initialised. This is in 
contrast with Timmis’ approach. Next two antibodies are 
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joined together only if their distance is not greater than 
the NAT value. 

3.2     PRESENTATION OF THE ANTIGENS  
 In this stage every member of the Ag set is presented to 
the network and the stimulation level of each antibody, 
sl(abi), i = 1,…, n,  is computed.  
According to Jerne’s hypothesis the stimulation level of a 
B-cell is the sum of three factors: its affinity to the 
antigens, its affinity to its neighbours in the network and 
its enmity to these neighbours. This definition of the 



stimulation level was applied in the AINE system. On the 
other hand, in the aiNet only the affinity of each antigen 
to all antibodies was taken into account. Similar idea was 
implemented in our system AIN. Define namely δi = minj 
d(abi, agj) to be the minimal distance between i-th 
antibody and the set of antigens. Now if δi ≤ NAT then 
sl(abi) = 1 – δi, and sl(abi) = 0 otherwise. 
Knowing the stimulation level of each antibody we can 
implement apoptosis, i.e. we can define the set of effective 
antibodies, Ab* ⊆ Ab. Initially Ab* = nil. First of all 
antibodies with zero stimulation value are removed from 
the set Ab. Denote Ab′ reduced set. Next, for each 
antigen, ag, we determine the set of antibodies 
recognizing this ag. If a given antigen is recognized by 
the unique antibody ab* then add this ab* to the set Ab*. 
Hence Ab′ – Ab* is the set of potentially redundant 
antibodies. If Ab″ ⊂ (Ab′ – Ab*) is the set of antibodies 
each of which recognizes a group of identical antigens,  
we find a single antibody with highest stimulation value; 
only this antibody is moved to the set Ab*.  
This way we are still in the frames of an idiotypic 
network. Stimulation value awards antibodies with 
highest affinity to the antigens, while suppressive 
mechanisms are moved to the purging procedure. It seems 
that correctly designed purging procedure is responsible 
for generation of stable immune networks. Nasaroui, 
Gonzales and Dasgupta (2002) introduced fuzzy ARBs to 
improve stability of the immune networks. In our opinion 
it is not necessary. We can even use “standard” definition 
of stimulation level as proposed by Jerne and we can still 
generate stable networks provided that efficient antibodies 
elimination (described above) is implemented – see Sect. 
4 for numerical results. 

3.3     PROLIFERATION 

Again this process is divided into three stages. First, the 
NAT value is recalculated using the cells from the set  
Ab*.  To do so, the set D’ – see Eqn. (1) – is constructed; 
its cardinality is l’ ≤ l.  

Second, most stimulated cells from the set Ab* are cloned 
and mutated. In cloning process an antibody with 
stimulation level sl produces cmax⋅sl clones, where cmax is 
a constant (maximal number of clones). Clones are added 
to a separate set of clones C. Each clone c = (c1, …, cm) is 
subjected mutation according to the equation 
ci = ci + r⋅∆, i = 1, …, m 
where r is a random number from the unit interval and ∆ 
= 1 – yi or ∆ = –yi (the decision which ∆ value to choose 
is made randomly).  
Third, mutated clones from the set C are integrated with 
the network, i.e. Ab = Ab* ∪ C. Finally the immune 
network is reconstructed: two antbodies abi, abj are joined 
together only if d(abi, abj) ≤ NAT.  

4 EXPERIMENTS 
To verify the quality of this new algorithm, three data sets 
were analysed.  In each experiment we focused on two-
dimensional data representing two separate clusters. The 
first experiment is concerned with linearly separable 
clusters (Figures 2a-2d). In two remaining experiments, 
Figures 3a-3d and 4a-4d, training data exhibiting non-
trivial patterns were used. Every AIN was developed 
through 50 iterations to observe stabilization of the NAT 
value as well as stabilization of resulting network size. 
Every set of figures, denoted a – d, includes: (a) antigen 
set, (b) final network structure, (c) evolution of NAT and 
(d) evolution of the network size. In every case after some 
number of iterations network becomes stable. This 
number depends on size and complexity of antigen set.  

Figure 2a: Antigens set 

Figure 2b: Final immune network 



Figure 2c: Evolution of the NAT value 

 
Figure 3a: Antigen set 

 
Figure 3c: Evolution of the NAT value 

 
Figure 2d: Evolution of the network size 

 
Figure 3b: Final immune network 

 
Figure 3d: Evolution of the network size 

 



 
Figure 4a: Antigen set 

 

 
Figure 4b: Final immune network 

 
Figure 4c: Evolution of the NAT value 

 

 
Figure 4d: Evolution of the network size 

 
Figure 5a: Evolution of the NAT value in a system with 

“standard” definition of stimulation level 

 

 

 
Figure 5b: Evolution of the network size in a system with 
“standard” definition of stimulation level 

Interestingly, the algorithm behaves almost identical 
when the stimulation level is defined as in (Timmis, 

2000). Figures 5a and 5b demonstrate evolution of the 
NAT value and network size for the antigen set presented 



on figure 4a. In fact minor modifications of the purging 
procedure results in different behaviour of the algorithm 
(see the url: http://www.ipipan.waw.pl/~stw/ais for 
different data sets analysed with different purging 
strategy). 

5   CONCLUSIONS 
In all the cases analysed the algorithm is able to produce 
correct networks after 15-20 iterations. After this time the 
network structure becomes stable – its size and the NAT 
value oscillates around fixed value. This fact can be used 
as the definition of the termination condition. Final 
network structure represents immune memory – it can 
react faster and better when similar data are encountered 
in the future. 
Interestingly, in each case we can observe data 
compression phenomenon like in the aiNet system. In 
first experiment the antigen set consists of 100 items and 
final immune network consists of 21 cells; so data 
compression ratio is 79%. In the second case data 
compression attains 69%, and in the third case – 29%. 
This property results from the second stage of the purging 
procedure (i.e. further reduction of the set Ab′ described 
in Section 3.2). The compression ratio depends on the 
topology of input data. 
The most important feature of the immune system is its 
ability to recognize new pathogens. The algorithm 
described in this paper passes this examination very well. 
The number, shape and location of generated clusters 
precisely reflects topological properties of the training set.  
Additionally clusters are formed adaptively. This is in 
contrast to the aiNet system, where antibodies are 
generated first, and next graph theoretical methods are 
used to cluster these antibodies.  
Finally the algorithm requires minimal number of control 
parameters indeed: it is necessary to define only the 
cardinality of the set D’ – cf. Eqn. (1) – and maximal 
number of clones cmax. The NAT value evolves during 
subsequent iterations of the algorithm. The same applies 
to the network size. 

6   FUTURE WORK 

The algorithm described in this paper possesses many 
intriguing properties. Detailed mathematical analysis is 
necessary to confirm these properties. Particularly deeper 
analysis of the influence of stimulation level computation 
and purging implementation on the algorithm behaviour 
should be performed.  
It was also observed (results not reported here) that in 
case of overlapping clusters the algorithm displays a kind 
of cross-reactive memory; this phenomenon should also 
be carefully verified.  
Lastly, the algorithm behaviour on more complex data 
sets will be examined, and more flexible strategies for 
choosing effective antibodies Ab* will be worked out.  
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Abstract 
 
This paper presents an artificial immune system 
(AIS) which produces artificial immune networks 
that are meaningful, of a bounded size and dynamic 
over a very large number of data presentations. 
This behaviour had proved elusive up to this time 
but has now permitted the application of the AIS to 
situations requiring continuous learning. It also 
removes the need to decide when to stop training 
an AIS. The new version of the algorithm is 
described, and results are presented for analysis of 
static and dynamic versions of a trivial two-
dimensional data set and Fisher’s Iris data. It is 
argued that the changes made from previous 
versions of the “resource limited” algorithm are in 
keeping with the goals of remaining true to the 
immune system analogy and making the system as 
simple as possible. 

1 INTRODUCTION 
The human immune system is a complex natural defence 
mechanism that recognizes and responds to the presence of 
foreign substances (pathogens). The response elicited 
depends on the previous experience of the immune system 
in question. Invaders that display antigens (features of 
pathogens) that have been experienced previously elicit a 
more rapid and more powerful response. This flexibility 
enables the immune system to remove a huge variety of 
infections, many of them novel to the immune system in 
question. This ability to learn and respond to a wide variety 
of similar but different pathogens has roused the interest of 
Artificial Intelligence researchers who wish to learn from, 
emulate and exploit artificial immune systems.  
There are several competing theories as to how the human 
immune system achieves the adaptability and flexibility that 
allows it to function so effectively. The existence and 
participation of the bone marrow, B-cells and T-cells in the 
process is beyond dispute. The ways in which these entities 
reproduce, clone and mutate is still a fertile field of study 
for immunologists. Computer scientists have for many 
years used evolutionary computing as a stock in trade (see 

Goldberg 1989), and thus understand something of how to 
deal with simulations of simple versions of these types of 
activity. The added interest of the immune system is in the 
mechanism that makes it so effective and so rapid in 
adapting, more rapid than organism level evolutionary 
adaptation.  
Of the various mechanisms suggested, the  network theory  
(see Jerne 1974, Perelson 1989), still very contentious in 
immunology circles, stands out as a tractable and familiar 
way to try to improve upon the performance of the standard 
genetic algorithm. AI has often resorted to networks of one 
type or another as mechanisms that can be made to exhibit 
emergent behaviour in a reliable, comprehensible and 
visually presentable way. Thus we have been working with 
models of immune systems based on network structures 
with B-cells as the primary unit (see Timmis et al. 1999, 
Timmis et al. 2000 and Timmis et al. 2001).  

2 REAL AND ARTIFICIAL IMMUNE 
SYSTEMS 

At this point a brief summary of some of the relevant terms 
and how they apply to real and artificial immune systems is 
appropriate: 
i) Pathogen: for the biological immune system a 

pathogen is usually a foreign body such as a virus, 
bactaerium, fungus or other parasite. For an 
artificial immune system a complete data item 
represents a pathogen. 

ii) Antigen: a real antigen is a substance which elicits 
a response from lymphocytes. These are often 
toxins or proteins which are characteristic of 
particular types of pathogen. In the artificial 
immune system a field within a data item with a 
particular value is comparable; as it is particular 
values in particular fields which stimulate the 
nodes in an artificial  immune system. 

iii) Lymphocytes: are the white blood cells in the real 
immune system which are responsible for the 
destruction of pathogens. B-cells and T-cells are 
two types of lymphocyte. In our artificial immune 
system B-cells are not represented individually, 
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but gathered together using the concept of the 
artificial recognition ball (ARB) as is described 
below (see section 2.4). 

iv) Innate versus adaptive immunity: innate immunity 
does not change throughout the lifetime of the 
individual and relies on different mechanisms from 
adaptive immunity which is what we are 
concerned with and wish to emulate in our 
artificial immune systems. 

2.1 INITIAL INNOCULATION 
The adaptive human immune system is primed at a very 
early stage in various ways including from the mother‘s 
milk and via vaccinations. For the human these very early 
additions to the immunological repertoire often mean the 
difference between life and death. Clearly the ability to 
bootstrap the immune system before any dangerous 
pathogens are missed is an essential feature of any immune 
system. Fortunately the effects of failure in AI systems tend 
to be less drastic than in the human body, but nonetheless 
the sensitivity of any immune system, real or artificial, to 
its initial pre-programmed repertoire is of the utmost 
importance. If it is necessary to pre-program with a very 
large number of antigens, and the system is not capable of 
dealing with antigens significantly different from those in 
the initial innoculation then this is not satisfactory. In fact 
the less that is necessary to begin with, the better.  

2.2 PRIMARY RESPONSE 
The primary response of an immune system is provoked 
when an antigen not previously encountered is detected. 
The bone marrow will generate a large number of B-cells, 
in the expectation that some of them will be able to deal 
with the infection, and will thus take over the production of 
more and more effective antibodies. After the response has 
cleared the infection, some of the more effective B-cells 
produced will remain in the body ready to respond the next 
time a similar infection occurs. 
This part of the process is recognized as a learning phase in 
which previously unseen patterns are stored for later recall. 
The way in which the B-cells that remain in the system are 
maintained, and do not die off is of fundamental importance 
and is where the network theory provides one of several 
possible answers. 

2.3 SECONDARY RESPONSE 
The secondary response is the response elicited when a 
familiar antigen is detected. Those B-cells already present 
in the body which are well adapted to dealing with the 
antigen will reproduce very rapidly to deal with the 
infection. 
The secondary response can be seen as the recall phase in 
the artificial immune networks presented. 

2.4 THE IMMUNE NETWORK THEORY 
The immune network theory proposes that the B-cells in the 
body interact with each other to maintain the immune 
memory. The mechanism proposed is that B-cells which are 
capable of recognising similar (but not necessarily 
identical) pathogens are also capable of recognising and 
stimulating each other (see Farmer et al. 1986). Thus a 
dynamic feedback mechanism can maintain parts of the 
immunological memory which are not frequently 
stimulated. Clearly however not all B-cells have sufficient 
stimulation to survive indefinitely and thus some will die 
out.  
In the human immune system T-cells both perform a 
surveillance role and interact with B-cells which 
complicates the mechanism somewhat. In our artificial 
immune system the role of T-cells is currently ignored.  
In the real immune system there are very large numbers of 
identical B-cells to deal with each type of infection. In an 
artificial system such repetition can be coded without 
representing all the identical cells individually. Fortunately 
the concept of a recognition ball which represents a region 
of antigen space that is covered by a particular type of B-
cell can replace the repetition of individuals (Perelson 
1989). 
So our AIS consists of a network of artificial recognition 
balls which are linked together if they are close to each 
other in antigen space. Pathogens (data items) can be 
considered to be points in this antigen space, and thus 
proximity can be defined as a simple distance function. 
When a data item is presented to the network the node 
which is the most stimulated produces clones of itself, some 
of which are mutated to increase the diversity of the 
network‘s recognition capabilities. The stimulation level of 
each node is calculated based upon its reaction both to the 
data items and to those nodes to which it is connected (see 
section 4.1). Thus nodes which are severely mutated into 
remote regions of the antigen space (and thus sparsely or 
totally disconnected) will not survive unless they match 
data items which are not presently covered by the network 
in which case they will expand its repertoire. 

3 BACKGROUND  
In a previous publication (see Timmis et al. 2001) we 
presented a resource-limited version of the AIS as a step 
toward a continuous learning version of the AIS presented 
in (see Timmis et al. 1999, Timmis et al. 2000). This 
previous work was motivated by the need for an AIS that 
did not rely on the arbitrary selection of the number of 
times that a data set should be presented to it, and the 
realisation that any AIS that did require such control was 
not a good model of a biological immune system. There 
were however several problems with the solution that we 
proposed: 
i) the mechanisms which governed the resource 

allocation were centralised in a very artificial way, 



which was contrary to the distributed nature of the 
original AIS 

ii) there was no “inertia” effect bound to the resources. 
Thus an ARB could gain or lose all of its resources 
in one pass through the network, which is quite 
unlike the biological immune system which takes 
time to build up immunity and time to lose it again. 

iii) The nature of the calculations performing the 
resource allocation required the normalisation of the 
stimulation levels, which lead to some inelegant, 
lengthy and unnecessarily complex calculations after 
every iteration 

iv) After several passes through the data set in question 
the network would begin to degenerate and fail to 
represent some of the data items 

v) The algorithm did not lend itself to a genuinely 
continuous mode of operation as resource allocation 
was performed after each pass through the data set. 
This required an epoch-based (synchronous update) 
approach which creates a variety of problems if the 
network is to be used in a continuous mode. 

After several attempts to modify the resource allocation 
mechanism it became clear that these problems were quite 
severe and were leading to a complex and arbitrary set of 
solutions. Thus a different approach was taken based on a 
simpler mechanism used after every data item presented. 

4 THE SSAIS 
This new approach lead to the self-stabilising artificial 
immune system (SSAIS) presented here. Artificial 
recognition balls (ARBs) are still used as the basic 
component of the network, and they are still linked together 
in the same way. The network affinity threshold is also 
calculated in the same way and serves the same purpose as 
in the original systems. The SSAIS differs from the 
resource limited artificial immune system (RLAIS) in 
several ways. The most important difference is that there is 
no fixed quantity of resources to be distributed centrally 
between the ARBs. The concept of resources is still present, 
but in an altered form. In the RLAIS the resources were 
allocated to ARBs by order of and in proportion to 
stimulation level. In the SSAIS resources are dealt with 
locally by each ARB. An ARB increases its own resource 
allocation each time it registers the highest stimulation for 
an incoming data item. The ARB increments its resource 
holding by adding its current stimulation level. 
Additionally, each time a data item is presented the 
resource level of every ARB decays geometrically. The 
balance between the decay of the resource level and the 
occasional boost received when an ARB “wins” is quite 
robust, and results in more densely populated areas of the 
data space supporting larger numbers of ARBs and more 
sparsely populated regions fewer ARBs. This results in 
emergent behaviour that is very similar to that of the 
original AIS and the RLAIS, but without the “one shot” 

constraint of the former and the normalisation, synchronous 
update and sorting requirements of the latter.  

4.1 THE STIMULATION FUNCTION 
In order to bound the growth of the resource level in any 
ARB (and thus in the network as a whole) it was necessary 
to bound the stimulation level. The simplest way to achieve 
this is to make a small modification to the ARB stimulation 
function. The stimulation function in previous systems (see 
Timmis et al. 2000) was made up of three components: 
i) An excitation factor, ps based linearly on the 

Euclidean distance to the current data item (p):  
ps = 1 – dis(p) 

ii) An excitation factor, ns based on the distance to 
the neighbours around the ARB: 

                        n 

ns = Σ 1 – dis(x) 
        x=0 

iii) A suppression factor, nn based on the distance to 
the neighbours around the ARB: 
                 n 

nn =  - Σ dis(x) 
            x=0 

In all equations the function dis(a) returns the Euclidean 
distance between the current node and the item a; and n 
represents the number of neighbours at the current node. 
These components are simply summed. The second and 
third components are based on the neighbours of the ARB, 
and there is no limit to the number of neighbours an ARB 
can have. This poses a problem in the form of the potential 
for unbounded growth. Two variants on this stimulation 
function were experimented with. The first of which is the 
most obvious and is simply the same as above, but with 
parts ii) and iii) divided by the number of neighbours. This 
succeeded in bounding the growth of the resource levels in 
the network, but resulted in networks which had one 
extremely dense and active region and other totally static 
sections which were much less dense remainders of the 
original network created from the initialisation data. In 
order to examine this behaviour a second simpler function 
was used with surprisingly effective results. The neighbour 
suppression factor was discarded completely and only the 
excitation retained. This resulted in a simpler stimulation 
function made up of only two parts which are summed: 
i) An excitation factor, ps based linearly on the 

distance to the current data item:  
ps = 1 – dis(p) 

ii) A normalised excitation, ns factor based on the 
distance to the neighbours around the ARB: 
                       n 

ns = 1/n × Σ 1 – dis(x) 
                  x=0 



When used within the scheme presented here, this function 
yielded networks which attain a “dynamic stability” with all 
parts of the network producing some clones (see below), 
and varying their topology a little at a time, whilst retaining 
the overall structure and distribution throughout the data 
space. 

4.2 ALLOCATING RESOURCES 
In this version of the immune network algorithm, resources 
are simply recorded as a numerical value associated with 
each node. This number is used both to decide when to 
remove a node from the network (when the resources fall 
below a minimum threshold) and to decide how many 
clones to produce (more resources implies more clones). 
Whilst there is no longer a central notion of resource 
availability, it is still appropriate to think of the ARBs being 
limited by available resources. In this system the ARBs 
allocate their own resources only when justified by reacting 
the most strongly to a data item. The level of resources at 
an ARB that is not the most stimulated by data item (i+1) is 
geometrically decaying with each data presentation, thus: 

R(a)(i+1) = dr × R(a)(i) 

where R(a)(i) represents the level of resources present at 
ARB a after the presentation of i data items and dr 
represents the rate at which the resource level at an ARB 
decays. The level of resources at the ARB which is the 
most stimulated by data item (i+1) will be: 

 R(a)(i+1) = dr × (R(a)(i) + SL(a)(i+1)) 
where SL(a)(i+1) represents the stimulation level of ARB a 
(as defined in section 4.1) after the presentation of data item 
(i+1). Thus when an ARB is the most stimulated for an 
incoming data item it gives itself a boost in its resource 
level. These two conflicting effects balance to ensure the 
survival of ARBs that regularly have the highest 
stimulation level and the gradual demise of those that do 
not. The decay rate scalar dr provides an easy control over 
the size of the networks produced. The values used for dr in 
this work were 0.999 for the trivial data set and 0.9995 for 
the Iris data. Some initial experimentation with these values 
was undertaken which seemed to indicate that the value of 
dr is a sensitive control for the size of the population. 

4.3 POPULATION CULLING 
After each data item is presented to the network any ARBs 
that have resources less than a fixed threshold value (the 
mortality threshold) are removed from the population. The 
threshold value used in this work was 0.6 for all networks 
regardless of the data set in use. This was an arbitrary 
choice, and further work is required to ascertain the 
sensitivity and range of values for this parameter. The 
networks produced do not seem to be particularly sensitive 
to the threshold at which nodes are culled. The values for 
mortaility and the multiplier for the resource level for new 
clones are also arbitrary and require further investigation. 

4.4 CLONING MECHANISM 
The cloning mechanism for the SSAIS is slightly different 
from previous systems. When an ARB is the most active it 
is allowed to undergo cloning. The ARB produces clones at 
a rate which is proportional to the resource level at the 
ARB. The number of nodes produced is calculated as 
follows: 
nc = R(a)(i)/(mortality × 10) 
where mortality is the minimum resource level that a node 
can have before being culled. This is because each clone 
that is produced is assigned mortality × 10 resources from 
the ARB‘s pool of resources. As each clone is produced its 
data fields are mutated with a fixed probability (the 
mutation rate). The mutation rate was fixed throguhout this 
work at 0.1%. If the clone is mutated then it gives rise to a 
new ARB with mortality × 10 resources. If it is not mutated 
then the resources are returned to the parent ARB. The new 
clones are incorporated into the network and the processing 
of the data items continues. 

4.5 THE ALGORITHM 
Prior to the commencement of training the network an 
initial innoculation of ARBs must be provided. For the 
work presented here 10 ARBs were used to initialize the 
network for the trivial data set, and 30 ARBs were used for 
the iris data set. These numbers were used because they 
represent 20% of the number of items in each data set. The 
items from the data sets were simply every fifth one in 
whatever order they happened to be. Initial experimentation 
with different initial innoculations indicated no significant 
difference in behaviour when using different sub-sets of 
either data set. 
Thus bringing all the above elements together, we can 
summarise the continuous algorithm as follows: 
i) Innoculate the network with a random set of ARBs 
ii) present a data item to all the nodes 
iii) find the node with the highest activation 
iv) allow this node to increase its resource level 
v) deplete resources at all nodes 
vi) cull nodes with less than threshold resource level 
vii) allow highest activation node to clone 
viii) relink the network with new clones 
ix) return to ii) 

5 EXPERIMENTS AND RESULTS 
Results for two data sets in two different modes are 
presented. The first set of data consists of 50 two 
dimensional data items arranged in two clusters (see figure 
8a). This was designed as a development tool to allow 
simple visualisation of ARB positioning in a well 
understood data set. The second set of data is Fisher‘s 
famous Iris data (see Fisher 1936) which provides a well 



known benchmark data set with understood properties and 
some more challenging characteristics. The data consists of 
150 four dimensional data items belonging to three 
categories, each of which represents a variety of Iris. A 
principal component plot (see Everitt 1974) of the first two 
principal components is presented in figure 8b. Both data 
sets were presented to the AIS as continuous streams of 
data which wrapped around each time the end of the data 
set was reached. The first two experiments were carried out 
using 20% of the data items as an initial innoculation and 
thereafter presenting all the data items from the outset. This 
type of analysis will be referred to from here on as 
complete. The last two experiments took one of the clusters 
from each data set and used 20% of this reduced set as an 
initial population and then trained for 250,000 data item 
presentations to demonstrate initial stability. Then the 
remainder of the data set was introduced and the network 
trained for a further 750,000 presentations to demonstrate 
the new stable state with the increased repertoire. This type 
of analysis will be referred to from here on as incremental. 

5.1 COMPLETE ANALYSES 
The complete analyses were carried out over 1,000,000 data 
item presentations to demonstrate long-term stability. The 
networks settle to a quasi-steady-state much more rapidly. 

5.1.1 Trivial data 
The networks produced for the complete analysis of the 
trivial data set very rapidly settled down to two distinct 
clusters of ARBs with the occasional appearance and 
disappearance of small outlying clusters or singlets which 
were rapidly culled (see figure 1). The network was 
examined at a large number of points during training and 
seemed to vary very little, although the addition and culling 
of clones occurred throughout (see figure 2). 

Figure 1: The network produced for the trivial data set after 
30,000 data items have been presented 

The size of the network settled down to between 40 and 55 
quite rapidly. Variations in size and structure continued but 
did not vary the basic structure of the network after 
approximately 1000 data items had been presented and 
processed. Slight variations in size and structure are due to 
the stochastic nature of the network introduced by the 
cloning and mutation mechanism. 
 
 

 
 
 
 
 
 
 
 

Figure 2: Size evolution of the network running on the 
trivial data set 

The input space was densely populated in regions 
containing high densities of data throughout training. 
Regions of lower density outside the clusters of data were 
either devoid of ARBs, or supported small clusters of 1,2 or 
3 ARBs for brief periods. These appeared due to the 
mutation of clones from the two groups. 

5.1.2 Fisher‘s Iris data 
This data set provides an interesting test for any data 
analysis technique as it consists of one clearly separable 
class of data (the Setosa class), and two slightly 
intermingled classes (the Virginica and Versicolor classes). 
A conventional Principal Component Analysis plot of the 
data shows this quite clearly in figure 8b. The network 
produced by the SSAIS after 350,000 data item 
presentations is shown in Fig. 3. 
The evolution of this network was allowed to run on for 
1,000,000 data presentations in order to examine the long-
term behaviour of the network. The shape of the network 
was examined at various points and after about 100,000 
iterations there were no major alterations in structure with a 
separate group for the Setosa class and an elongated group 
for the other two classes. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Network produced for the Iris data after 350,000 
data item presentations 

 
 
 
 
 
 
 
 
 
 

Figure 4: Size evolution of the network running on Fisher’s 
Iris data set. 

 The long-term evolution of the size of this network is 
shown in Figure 4. The trace shows very rapid growth 
initially followed by gradual growth until about 150,000 
iterations. Thereafter the network has a relatively stable size 
that varies by about 20 nodes either side of 120. This steady 
but dynamic behaviour is desirable as it indicates 
continuing introduction and maintenance of diversity within 
the network, whilst retaining reasonable coverage of the 
data space over a very long period. The enduring shape of 
the network can be seen in figure 5 which shows the final 
state of the network after 1,000,000 iterations. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5: Network produced for Iris data after 1,000,000 
data items have been presented. 

Thus the networks produced throughout training on the Iris 
data cover the data space well, and reflect the nature of the 
groupings in the data. 

5.2 INCREMENTAL ANALYSES 
The incremental analyses were carried out over 1,000,000 
data presentations in order to demonstrate the stability of 
the networks in their new configurations. Typically the 
behaviour of the networks settles down much more rapidly 
than this. 

5.2.1 Trivial data 
For the incremental analysis of the trivial data set the 
network was initialized with 5 of the 25 data items from the 
cluster close to the origin (see figure 8). The network was 
then trained for 250,000 data presentations with the 
members of only that cluster. The data being presented was 
then expanded to include the second group of data which is 
centred around the point (0.8,0.8). The size evolution of the 
network is shown in figure 6. 
The network size can be seen to stabilise at the beginning of 
training at a size of between 30 and 45 nodes whilst only 
the first cluster of data is being used. The second cluster of 
data is introduced after 250,000 iterations after which the 
network takes about 200,000 more iterations to begin to 
cover the new data cluster. Examination of the intermediate 
networks produced shows little development of the network 
into regions which cover the new data. This seems to be 
due to the relatively confined region which the network 
covers before the second cluster is introduced. This lack of 
diversity in the network makes it unlikely that any mutated 
clone with only a single mutated antigen will be close 
enough to the new data items to survive. Thus the chance 
generation of several clones into the same region is required 
in order for the colonisation of the newly populated region 



of input space to begin. Once a start has been made, the 
new region is rapidly covered quite effectively. This is 
shown by the increase in population size at 500,000 
iterations. See figure 9 for network evolution. 
 
 
 
 
 
 
 
 
 
 

Figure 6: Size evolution of the network running on the 
trivial data set with introduction of second cluster at 

250,000 iterations. 

5.2.2 Fisher‘s Iris data 
For the incremental analysis of Fisher‘s Iris data the 
network was initialized with 10 of the 50 Setosa class (see 
figure 8). The network was then trained for 250,000 data 
presentations with members of only that cluster. The data 
being presented was then expanded to include the other 
classes of data (Virginicas and Versicolors) which form a 
clearly distinct cluster. The size evolution of the network is 
shown in figure 7. 
 
 
 
 
 
 
 
 
 
 

Figure 7: Evolution of network size for incremental 
analysis of Fisher‘s Iris data. 

The network can be seen to have settled to a reasonably 
constant size of between about 70 and 110 when training on 
only the Setosa cluster (before 250,000 iterations). 
Subsequent to the introduction of the second cluster of data 
the network undergoes some fairly rapid changes. Initially 
there is a short period (between 250,000 and 300,000 
iterations) of decline in size of the network. Then there is a 
period of quite rapid growth until about 450,000 iterations 
after which the network settles down to a fairly steady size 
of between about 105 and 130 nodes. Prior to the 

introduction of the second group of data the network 
consists of a single highly connected cluster of nodes. Upon 
the introduction of the additional data the network spreads 
out into a more complex structure before several chunks 
split off from the initial cluster and reform into a second 
large highly connected cluster. The ultimate shape which 
the network assumes is very similar to that  produced by the 
complete analysis presented in section 5.1.2 (see figure 5). 
Snapshots of the network evolution throughout the 
incremental analysis are shown in figure 10. 

6 DISCUSSION 
The goal of this work was to create a genuinely stable, 
adaptive and continuous AIS. The changes that were 
introduced grew out of the realization that the shortcomings 
of the RLAIS (Timmis et al. 2001) stem from two 
fundamental problems: the nature of the resource allocation 
mechanism and the explicitly non-continuous nature of the 
epoch based update mechanism. The latter problem of 
assuming that there was an obvious point at which to stop 
presenting data items and perform an “update” was very 
simple to deal with. This just involved re-examining the 
algorithm and making sure that every operation could be 
carried out after the presentation of every data item. Most 
of the components of the system lent themselves readily to 
this approach, and as the resource allocation scheme was 
under scrutiny, problems with that aspect and the closely 
related problem of when and how much to clone were 
redesigned to fit the new regime. Successfully altering the 
resource allocation scheme required a little more thought. 
The fields of genetic algorithms and artificial life have 
taught many lessons about the nature of emergent 
behaviour in such systems, one of the most basic being that 
decentralization of control mechanisms usually leads to 
more interesting behaviour (see Johnson 2001). This led to 
the (now obvious) idea of devolving resource allocation to 
the ARBs, and adjusting the stimulation function to 
facilitate this. Thus now the only centralized function is that 
of choosing the winning ARB from the network. Finding 
the winner locally in the network would probably be 
possible, but unnecessarily complex and somewhat 
pedantic, especially as it could be argued that the bone 
marrow is a centralized controller of some importance in 
the biological immune system. Other mechanisms which 
allocate resources based on “local” winners were briefly 
examined and may be the subject of further research. 
The time lag between the introduction of a new region of 
input data and the network covering the new region of the 
data space is disappointing. This is especially evident in the 
incremental analysis of the trivial data set. It seems clear 
that this lag is primarily due to a lack of diversity in the 
network. The network is slow to regain the diversity 
required to cover the new region due to the mutation and 
cloning mechanism, which is likely to produce mutations 
with only one data field different from the parent ARB. 
Thus it seems that examining more effective cloning and 
mutation mechanisms for the primary response would be of 
great interest. These are likely to involve an artificial bone 



marrow that produces random antibodies when a poorly 
recognized pathogen is detected. 
Control of the size of the network is to some degree 
removed from the domain of the user of the SSAIS, but 
clearly not entirely. The number of ARBs with which the 
network is initialized provides an initial point from which 
the system can evolve and thus provides a short-term 
control although the mortality constant and decay rate are 
far more sensitive and control the long-term meta-dynamics 
of the networks. The mortality constant provides a very 
coarse control which is unlikely to be changed in practice. 
The decay rate however provides a much finer control over 
the size of networks produced. Precisely how the size of the 
network relates to the decay rate will vary depending on at 
least the density of the data points in the input space, and 
the frequency of repetition of similar items. With fixed data 
sets the latter of these is simply the number of items in the 
set. The former is hard to measure, and its effect harder 
still. Some type of automatic and dynamic control of the 
decay rate would be extremely useful and remove a 
potential fudge factor. 

7 FUTURE WORK 
A number of pieces of work will flow directly from this 
approach to the construction of artificial immune networks: 
i) The testing of the algorithm on some more 

complex data sets from the real world. This will 
enable some detailed comparisons with other 
techniques to be made, as well as to verify that the 
behaviour seen with the data sets presented here is 
repeatable. 

ii) Running the algorithm on a continuously varying 
data source rather than fixed data sets presented 
many times to examine the flexibility of the 
representations formed and the rate at which the 
networks can track varying input. 

iii) Creating an efficient and well engineered  
implementation of the algorithm. This will offer 
some performance increases, although 
performance has not proved to be a problem, as 
well as providing a stable software platform on 
which to base further experiments. 

iv) Examining more realistic and intelligent cloning 
and mutation mechanisms. There is evidence that 
biological immune systems employ some very 
well controlled and directed cloning and mutation 
mechanisms, none of which are exploited here (see 
Kepler et al. 1993). Significantly different and 
potentially more useful behaviour could be 
expected if some methods such as these were 
applied. 

 
 
 

8 CONCLUSIONS 
The algorithm presented here generates networks of a 
bounded size over an indefinite number of data 
presentations and updates. The networks produced are 
continually changing whilst retaining good coverage of the 
input space and some diversity via the mutation mechanism 
employed. No central control in the form of a resource 
allocator is required which holds true to the distributed 
nature of the networks under construction. The system also 
has the advantage of being conceptually simpler than the 
previous resource limited artificial immune system. The 
dynamic stability displayed is a better model of the immune 
system than previous work presented and shows great 
promise for applications requiring analysis of continuously 
changing data sets with minimal intervention in the learning 
process. 
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      Figure 8: a) Two-dimensional trivial data set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9:  Network evolution during incremental learning 
of trivial data set. Series evolves top left to bottom right.   

 
 
 
 
 
 
 
 
 

 
b) Principal component plot of Fisher‘s Iris data. Setosa 

     square, Virginica round, Versicolor triangular. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
      Shots taken at 250,000,300,000, 400,000 and 450,000 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Network evolution during incremental learning 
of Fisher‘s Iris data. Series evolves top left to bottom right. 
  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shots taken at 500,000, 550,000, 600,000 and 700,000 
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Abstract 

 
The immune system is a remarkable and complex 
natural system, which has been shown to be of interest 
to computer scientists and engineers alike. This paper 
reports an on-going investigation into the usefulness of 
the negative selection metaphor for immune inspired 
fault tolerance. Various procedures to generate 
detectors for the negative selection algorithm are 
reviewed and compared in terms of time and space 
complexity for the production of competent detectors. 
A new algorithm has been identified and implemented. 
Experimentation was undertaken, and an analysis is 
presented on the effectiveness of the various 
algorithms. The outcome of this empirical analysis 
reveals that trade-offs have to be made in the choice of 
algorithm based on the time and space complexities, as 
well as the detection rate.   
 
1. INTRODUCTION 
As engineering and computing problems grow ever 
more complex, alternative sources of inspiration for 
solutions to these problems are being sought by 
computer scientists and engineers. Biology has been 
seen as a fruitful resource of inspiration with the 
creation of various biologically inspired techniques 
such as genetic algorithms, neural networks, and swarm 
systems (Bentley 2001). The immune system is now 
receiving more attention and is slowly being realized as 
a new biologically inspired computational intelligence 
approach (de Castro and Timmis 2002). An intuitive 
application of the immune system, and one that many 
researchers have followed, is to create artificial systems 
that have the ability to differentiate between self and 
non-self states: where self could be defined as many 
things, such as, normal behavior, normal network traffic 
between computers, and so on. 
The next section explores one way in which the 
immune system allows for self non-self discrimination 
(negative selection), and reviews some approaches in 
artificial immune systems literature that have attempted 
to model this process. The main problems with these 

approaches are highlighted and a new algorithm has 
been implemented in an attempt to overcome some of 
these problems. The results presented in this paper 
demonstrate that the proposed algorithm is equivalent 
to the exhaustive algorithm for certain classes of 
problems, and even outperforms it in some cases for 
example clustered data. The fact still remains that none 
of the algorithms is able to resolve all the inherent 
problems associated with detector generation, thus 
some tradeoffs have to be considered when choosing an 
algorithm for generating detectors. The final section 
presents some conclusions and directions for future 
research. 
 
2. USEFUL IMMUNOLOGY 
The immune system is a remarkable and complex 
natural defense mechanism. The immune system 
responds to foreign invaders called pathogens. The first 
line of defense is known as innate immunity: this is the 
immune mechanism our bodies are born with (Janeway 
1993). If the innate immune system cannot remove the 
pathogen, then the adaptive (or acquired) immune 
system takes over.  
The adaptive immune system is made up of B and T-
cells, which are capable of responding to certain 
antigenic patterns presented on the surface of 
pathogens. Receptors on B and T-cells match antigenic 
material and depending on the closeness of that match, 
T-cells stimulate B-cells into rapid proliferation and 
undergo affinity maturation.  
Affinity maturation is a process by which stimulated B-
cells are driven to become better tuned to the antigen 
responsible for initiating the immune response. This 
enhances the quality of the response (Staines, Brostoff 
et al. 1994). During affinity maturation, stimulated 
antibodies undergo a somatic mutation with high rates, 
termed hypermutation. The amount of mutation that a 
B-cell will undergo is inversely proportional to how 
well it matches the antigenic pattern: the higher the 
affinity (match) the lower the mutation, and vice versa. 
Production of antibodies from these B-cells then 
ensues, which ultimately remove the antigenic material. 



Viewed from a computational perspective, this is an 
attractive learning mechanism and is one reason why 
the immune system has attracted such interest. 
Pertinent to this work is the maturation of T-cells: what 
mechanisms are present to prevent the T-cells reacting 
against the own cells of the body? If this breakdown 
happens, it is known as an autoimmune disease. This is 
in part prevented via a process known as negative 
selection, that allows only the survival of those T-cells 
that do not recognize self cells. T-cells are produced in 
the bone marrow, but undergo a maturation process in 
the thymus gland, after which they are allowed to take 
part in an immune response. The maturation of the T-
cells is conceptually very simple. T-cells are exposed to 
self-proteins. If this binding activates the T-cell, then 
the T-cell is killed, otherwise it is allowed into the 
repertoire. Cells that take part in an immune response 
are known as immunocompetent cells.  

 
3. ARTIFICIAL IMMUNE SYSTEMS  
Artificial immune systems (AIS) are adaptive systems 
inspired by theoretical immunology and observed 
immune functions, principles and models, which are 
applied to problem solving (de Castro and Timmis 
2002). The important points of this definition are 
inspiration and rationale. In this case, the main idea is 
to develop problem solving tools that are inspired by 
the immune system. Through the use of the negative 
selection process described above, there have been a 
number of works attempting at building artificial 
immune systems for virus detection (Forrest, Perelson 
et al. 1994), computer security (Forrest, Hofmeyr et al. 
1996), (Hofmeyr and Forrest 2000) and hardware fault 
tolerant systems (Bradley and Tyrell 2002). The 
original work by (Forrest, Perelson et al. 1994), in 
which the negative selection algorithm was proposed, 
has been inspirational to almost all the research in the 
AIS related to the computer security. More recently, 
that work has also provided the basis for building fault 
tolerant systems (Tyrell 1999). The basic idea of the 
algorithm is to produce a set of change-detectors, 
which can detect changes in what is considered normal 
behavior of a system. 
 
4. NEGATIVE SELECTION: 

PRINCIPLES AND ISSUES 
The negative selection algorithm is inspired by the 
maturation of T-cells in the thymus gland (Forrest, 
Perelson et al. 1994). The algorithm consists of two 
stages: censoring and monitoring. The censoring phase 
caters for the generation of change-detectors. 
Subsequently, the system being protected is monitored 
for changes using the detectors generated in the 
censoring stage. However, this algorithm is reported to 
be very time consuming (D'haeseleer, Forrest et al. 
1996), (Wierzchoń 2000). The time taken to generate 
the detectors is measured by the number of candidate 

detectors that have to be examined before producing the 
required number of competent detectors. It was 
observed that the number of candidate detectors 
increases exponentially with the size of the self-set, at a 
fixed probability of not detecting non-self (Forrest, 
Perelson et al. 1994). This implies that the time to 
complete the process increases with the size of the self-
set. Furthermore, this process does not check for 
redundant detectors. For minimizing these limitations, 
some variations of detector generating algorithm were 
developed: linear (D'haeseleer, Forrest et al. 1996), 
greedy (D'haeseleer, Forrest et al. 1996), and binary 
template (Wierzchoń 2000). Both the linear and greedy 
algorithms run in linear time respective to the size of 
the self and detector sets (D'haeseleer, Forrest et al. 
1996). While the focus of the binary template is to 
generate efficient non-redundant detectors rather than 
minimizing the time to generate them. Work in 
(D'haeseleer, Forrest et al. 1996) claimed that the 
greedy algorithm manages to resolve this problem by 
generating a complete repertoire of detectors. 
 This paper includes the examination of time and space 
complexities of these algorithms, which were 
normalized for comparison. In order to cater for worst 
case situations, all the earlier assumptions included in 
the derivation of the original time and space 
complexities were discarded. For a more detailed 
comparison of several negative selection algorithms, 
please refer to (Ayara, Timmis et al. 2002). 
 
4.1 EXHAUSTIVE DETECTOR GENERATING 

ALGORITHM 
The exhaustive detector generating algorithm is the 
original method proposed by (Forrest, Perelson et al. 
1994). The algorithm attempts to construct a set of 
competent detectors in the following way: (1) define the 
self data; (2) generate a random candidate detector; and 
(3) match each candidate detector generated with self 
data. If it matches with any self data, it is discarded, 
otherwise it is added to the collection of competent 
detectors.  A flow diagram of the algorithm is presented 
in Figure 1 .  
 

Self data (Ns) 
 
 Collection of 

competent 
detectors 

(NR)

no Generate 
candidate 
detector 

 Match?

 
(NRo) 

 
 

Reject  

yes 

Figure 1: Exhaustive detector generating algorithm. 



 
The time complexity of the algorithm was derived 
based on two factors: the time to generate a number of 
candidate detectors (NRo) and the time to compare each 
one of them with the population of self-data (Ns). The 
space complexity depends on the self-population, 
whose individual members are of length l. In 
(D'haeseleer, Forrest et al. 1996), the authors  derived 
mathematical formulae to determine the computational 
complexities of the original algorithm. These were 
reviewed based on the following considerations: (1) 
generalising alphabet size m from binary {0,1}, where 
m = 2; and (2) the total number of candidate detectors 
(NRo) that can then be generated is ml, where l is the 
length of each individual detector string. 
Time and space complexities for this algorithm are 
presented in Section 7, while the empirical experiments 
carried out with the algorithm using 8-bits binary data,  
are presented in Section 6. The experiments confirm the 
limitation observed by (Forrest, Perelson et al. 1994) 
and (Kim and Bentley 2001), which is a costly 
computation of generating detectors. 
The results motivated the examination and proposal of 
other algorithms to generate the set of candidate 
detectors. They are the linear, greedy and binary 
template algorithms. For the linear and binary template 
algorithms, please refer to (D'haeseleer, Forrest et al. 
1996) and (Wierzchon 2000), respectively. The greedy 
algorithm will be analyzed in the following section due 
to its advantages of being linear in relation to the self-
set as well as presenting a good coverage of non-self. 
 
4.2 GREEDY DETECTOR GENERATING 

ALGORITHM 
The greedy algorithm improves upon the linear 
algorithm through the elimination of redundant 
detectors. Furthermore, it ensures that generated 
detectors achieve as much coverage of non-self space as 
possible (D'haeseleer, Forrest et al. 1996). The 
algorithm is in two phases. The first is the processing 
phase taken from the linear algorithm, with the second 
phase being the actual process of generating detectors. 
This algorithm is based on the use of schemata 
proposed by (Helman and Forrest 1994) for the r-
contiguous bits matching rule. The r-contiguous bits 
matching rule is a model of the affinity measure in the 
immune system. Assuming a binary representation of 
the self and detector strings, the r-contiguous bits 
matching rule compares a sequence of bits (of length r) 
in one string with a sequence of bits of the same length 
in the second string to see if they match. This approach, 
as shown in Figure 3, has been stated to closely capture 
the interaction between elements in the immune system 
(Percus, Percus et al. 1993).  This is subject to a pre-
defined matching threshold r that is the minimal length 
of contiguous bits strings common to the two strings for 
a match to occur. Given this matching rule, the 

schematic approach is to check for these common sub-
strings, as depicted Figure 2, rather than the whole 
string.  
 r = 4 
 
 

         R:  0 1 0 1 1 0 1 0 
         S:  0 0 0 1 1 0 0 1 

 

Figure 2:  r-contiguous bits matching rule. The strings R 
and S of length l = 8, present r = 4 consecutive bits in 

common. 

 
Assuming a matching threshold r, an alphabet size m 
(usually binary) and a length l, which is the length of 
each string, the first phase involves the generation of 
valid detector templates from a total number of mr 

possible combinations. Templates are strings with r-
contiguous significant bits that start from a specified bit 
position; and l - r insignificant bits replaced with don’t 
cares. Each template is constructed from a sequence of 
r bits that can be extended to fully specified detector 
strings. The set of valid templates are based on the self-
data, such that only templates with no match in self are 
generated. These templates make up the first template 
array TS where the nonzero entries constitute the valid 
templates.  
During the second phase, detectors are generated 
through the extension of the templates to fully specified 
detector strings. After the generation of each detector 
string, all the templates that match the detector are 
removed from the set of valid templates for generating 
detectors. This prevents the generation of redundant and 
inefficient detectors at each step.  
The time complexity of this algorithm depends on three 
factors: (1) the time to generate each valid detector 
templates in mr; (2) the time to extend each valid 
template to  a fully specified string; and (3) the time to 
update the templates TR when creating each detector. 
The original time and space complexities were derived 
given these considerations (D'haeseleer, Forrest et al. 
1996), but their corresponding mathematical formulae 
were derived based on the assumptions that each 
element of the template array can be evaluated in 
constant time. Also, the analysis ignored the earlier 
processing phases, before the valid number of detector 
templates are derived. Additionally, emphasis on binary 
alphabets can be extended to an alphabet size of m. 
These were incorporated into the reviewed formulae in 
Table 5.  
 
5.  NEGATIVE SELECTION WITH 

MUTATION  
Work in (de Castro and Timmis 2002) proposed a slight 
modification of the exhaustive stage of the negative 



selection, by introducing somatic hypermutation. 
Briefly, the procedure proposed the following: (1) 
define self data;  (2) generate a candidate detector 
randomly; and (3) match each candidate detector with 
self data, if it matches, perform guided mutation on 
detector away from self. The guided mutation is 
performed on the candidate detector, which matches the 
self data. Mutation is then performed on the parts of the 
candidate detector that match with the self element. The 
mutation is adaptive, based on the affinity of the closely 
matching self element to a candidate detector. This 
means that the probability of mutation is directly 
proportional to affinity. Thus, the greater the affinity, 
the higher is the mutation probability. This idea was 
taken from the affinity maturation process of B-cells to 
antigenic patterns in the immune system. In this 
algorithm, however, the reference is the self-set, instead 
of non-self set. Hence, the mutation is performed 
proportionally to affinity to self-set, such that the 
candidate detector is changed so as not to match self-
set. Also, this mutation approach was further 
augmented by the introduction of a life time indicator 
for a candidate detector. This in effect restricted the 
number of times mutation is performed on a candidate 
detector before a non-improved mutant is discarded.  It 
was thought to have the desired effect of reducing the 
search space and hence, the number of candidate 
detectors generated.  
The time complexity of NSMutation depends on the 
following factors: (1) the time to generate a random 
detector (each of length l) and compare with the 
population of self data to determine if they match; (2) 
assuming the use of r-contiguous bits matching, time to 
mutate matching region of length r in random detector 
away from self; and (3) a check for redundant detectors. 
In the worst case, possible detectors can be 
generated when an alphabet size m is assumed. Hence 

 candidate detectors are equivalent to . Also, 
mutation is limited to a region of length r in the 
candidate detector, which gives the upper bound of 
mutating the candidate detector as . Subject to these 
factors, the time and space complexities are given in 
Table 5. 

lm

RoN lm

rm

6. EXPERIMENTS 
In order to verify the claims made in (Forrest, Perelson 
et al. 1994) and (Kim and Bentley 2001) with regards to 
the exhaustive algorithm, and additionally to test the 
efficacy of the proposed algorithms, experiments were 
undertaken using an 8-bit binary data test set. The 
exhaustive algorithm was used as the empirical 
standard for the experiments.  

6.1 EXPERIMENTAL SETUP 
The experiments were performed with randomly 
generated 8-bits data, with the inclusion of relevant 

parameters. The following subsections describe the 
procedures carried out for experimental set up. 

6.1.1 Generating  self data 
As earlier stated, the 8-bit data used were randomly 
generated. The pseudorandom number generator of the 
Java 2 Platform (Standard Edition version 1.3) API was 
used to generate integer numbers between 0 and 255, 
which were then converted to 8-bit binary strings. 
During the experiments, there was a need to generate 
different sizes of self set. This was carried out by 
creating separate files for different population sizes of 
self sets.  

6.1.2 Setting the matching threshold  
The affinity between these binary strings (for the self-
set, detector set and test data) was determined using the 
r-contiguous bits matching rule. The optimal value for 
matching threshold ( r ) had to be obtained by changing 
values of r from 1 to l. This process was done in order 
to obtain the combined values of correct and incorrect 
classification by detectors generated using a specific 
threshold. Correct classification value is derived from 
the sum of true positive (rate at which non-self is 
correctly detected) and true negative (rate at which self 
is correctly not detected). While incorrect classification 
is the sum of false positive (rate at which self is 
incorrectly detected) and false negative (rate at which 
non-self is not detected). Both the correct and incorrect 
classification values are used to determine the 
appropriate values of r. This is different from the 
approach used by (Kim and Bentley 2001) as well as 
the suggested method in (D'haeseleer, Forrest et al. 
1996). In (Kim and Bentley 2001), the value of r was 
determined from the equations in (Forrest, Perelson et 
al. 1994), which yielded poor values of matching 
threshold for the corresponding data. While 
(D'haeseleer, Forrest et al. 1996) proposed an approach 
based on the greedy algorithm. Both approaches reveal 
that there is no hard-and-fast rule for setting this 
parameter, rather various values can be tested in order 
to select the optimal one. The following procedure was 
carried out to determine this parameter: 
 

1. Generate self and test sets from the data sets 
being experimented upon;   

2. Generate required detectors NR (using 
equation: ( )

m

f
R P

P
N

ln−
= ) for different values of r 

which are varied from 1 to l; 
3. Test the detectors generated on the test file to 

obtain their correct and incorrect classification 
rates; 

4. Use the value of r for which there is minimal 
incorrect classification and maximum correct 
classification rates in subsequent experiments. 



 
An outcome of the procedure is illustrated in Table 1 
based on the mean values of correct and incorrect 
classification rates obtained over 10 trials using the 
following parameters: self set NS = 8, test set NT = 256, 
available  (NR), and potential (NRo) repertoires. Given 
this table, a matching threshold value of  8 will be 
preferable to the other values since it yields maximum 
correct and minimum classification rates. When the 
matching threshold was set to values below 3, no 
detectors could be generated. This indicates that at such 
threshold values, all the detectors match the strings in 
the self-set. The value of r thus determines the proper 
partitioning of the data space into self and non-self 
segments. This makes the choice of an optimal value 
for r crucial to the effectiveness of the change-detection 
function.  
 
Table 1: Test for obtaining optimal value of matching 

threshold ( r )  

r 
 

NRo 
 

NR 
 

Correct 
classification 

rates 

Incorrect 
classification 

rates 
3 209.2 5 41.80% 58.20% 
4 37.30 12 56.02% 43.98% 
5 46.50 29 70.98% 29.02% 
6 87.90 74 85.12% 14.88% 
7 210.90 196 89.10% 10.90% 
8 604.80 589 91.72% 8.28% 

 

6.1.3 Mutation probability  
The mutation probability (mutProb) is a threshold that 
determines whether a bit position in a binary string will 
be mutated or not. This value was initially implemented 
using an adaptive mechanism which is calculated as the 
length of the matching bits in two binary strings divided 
by the length l of the binary string. The value generated 
is a real number between 0.0 and 1.0. This threshold 
value is then used to determine whether a bit position is 
subjected to mutation. For each bit position to be 
mutated, if a randomly generated number between 0.0 
and 1.0 is less than the mutation probability, the bit is 
mutated. The converse is the case when the random 
number is greater than the mutation probability. In 
(Ayara, Timmis et al. 2002), the adaptive mutation 
probability was discovered to degrade the time 
complexity of the algorithm if the probability is greater 
than a specific value. This is because the probability 
indicates that a sizeable fraction of the total number of 
bits in a random binary string matches self. Hence the 
process of mutating a random detector is restricted to 
limited options. This can be explained by a matching 
threshold r = 8. In this case, the mutation probability is 
1 and the process of mutation just flips a random 
detector to its image. In a situation that the image also 
matches self, mutation flips back to the original 
detector which also matches self. If this is the case for a 

significant number of random detectors generated, the 
time complexity is increased considerably. However 
there is a threshold value below which this will not 
occur. For example, the results of experiments in 
(Ayara, Timmis et al. 2002) show that using 8-bits 
binary data generated randomly the maximum mutation 
probability that will not make the algorithm worse off 
than the original exhaustive, for threshold values of 7 
and 8, was confirmed to be 0.8. This directed the choice 
of mutation probability for subsequent experiments, 
which was set to 0.5. 

6.1.4 Detector life-time indicator 
The detector life-time indicator (mutLim) determines 
the number of attempts that mutation can be performed 
on a random detector. When values of this parameter 
are greater than 1, it was found to increase the time 
complexity of NSMutation when used with adaptive 
mutation probability. This phenomenon can be linked to 
the explanation given in section 6.1.3, which accounts 
for the poor behaviour of the algorithm using adaptive 
mutation probability. In a situation when the mutation 
probability is above a specific value, and the limited 
detector options that mutation can generate also match 
with self, an increase in life-time indicator only extends 
the time for the flipping the detector back and forth 
between the image and the original detector.  
 
Some definitions of terms used in the experiments are 
listed in Table 2. 

 
Table 2: Definitions of terms used in experiments 

Terms Definitions 

l Length of string 

r Matching threshold 

m Alphabet size 

NS Population of self data 

NRo Population of candidate detectors 

NR Population of competent detectors 

Pm Probability of detecting a non-self 

Pf Probability of failing to detect   non-self 

NT Population of test data 

mutProb Mutation probability 

mutLim Mutation limit (Detector life-time 
indicator) 

 
 



6.2 THE BOTTLENECK FOR NEGATIVE 
SELECTION 

Given the earlier discussion regarding the constraint of 
the exhaustive algorithm, i.e., the size of the set of 
candidate detectors increases exponentially with the 
size of the self-set, initial tests were performed to check 
if this claim holds true for the proposed algorithm. This 
process involved determining the number of candidate 
detectors required to produce a specified number of 
competent detectors when the population size of self is 
increased progressively. The test was carried out with 
both the NSMutation and exhaustive algorithm for 
comparison.   

Using the definitions provided in Table 2, the 
mathematical equations for estimating Pm, NR, and NRo 
(Forrest, Perelson et al. 1994), were employed for 
implementing the algorithm. 

The following procedures were carried out for 
NSMutation algorithm: 

1. For a particular data set, derive r   (section 6.1.2) 
for all runs of the experiment; 

2. Calculate  and select a desired value for ; mP fP

3. Determine the value of NR according to the 
following equation: ( )

m

f
R P

P
N

ln−
= ; 

4. Set the values of mutProb and mutLim using the 
guidelines in sections 6.1.3 and 6.1.4 respectively;  

5. Execute steps a-c a number of times while 
incrementing the size of NS, 8 ≤ NS ≤ 160. (The 
selected value was 100 for trial runs): 

a. Determine NRo  experimentally by generating 
random strings until  valid detectors are 
determined;  

RN

b. Once a match occurs between a self string and 
a candidate detector, or there is a duplicate of 
the detector in the detector set, perform 
uniform mutation in a guided manner until the 
candidate detector becomes a competent 
detector. The detector is then added to the set 
of useful detectors; 

c. The number of mutation attempts is limited by 
a detector life time indicator (mutLim), which 
is set to a fixed value.  

This life-time indicator constrains the time expended to 
change a detector that closely resembles self. In a 
situation where a mutated detector is not improved by 
the time the life-time has expired, it is discarded and  
replaced by another random detector. The same process 
was undertaken for the exhaustive algorithm, excluding 
the mutation operator and the check for redundant 
detector in the detector set. The potential repertoire size 

( RoN  - collection of candidate detectors before negative 
selection) for both algorithms was recorded for 
comparison. While the population of detectors 
generated after negative selection, known as the 
available repertoire size ( ), was set as a parameter 
for the simulation. The results obtained from the 
experiments are presented in  Table 3 and Figure 3. 
These results are obtained from 100 trials for each size 
of the self-set, 8 ≤ N

RN

S ≤ 160, with the following 
parameters NR = 589, r = 8, Pf = 0.1, mutLim = 4, 
mutProb = 0.5. Each column of Table 3 holds values 
calculated as a mean of the number of trials, while the 
standard deviations are enclosed in brackets for each 
mean value. Column (a) indicates the size of self set, 
(b) holds the theoretical estimates of potential repertoire 
(NRo), (c) the experimental NRo values for the exhaustive 
algorithm, (d) experimental NRo values for NSMutation, 
and (e) the mean mutation occurrence over 100 trials. 
The results in Table 3 are selected from the outcome of 
the experiments shown in Figure 3. From Table 3, it can 
be clearly seen that the potential repertoire generated 
for both algorithms are similar, for example when the 
population size of self set is 152, the exhaustive and 
NSMutation algorithms generate potential repertoire of 
1128.16 and 1127.62 respectively. This explains the 
overlap in the graphs of both algorithms. Also, column 
(e) in Table 3 show that mutation occurs 1.807 ≈ 2 
times out of 100 trials.  
In order to determine the effectiveness of the 
NSMutation in comparison to the exhaustive algorithm, 
their detection rates were tested empirically using a 
single population size of self NS = 8. Other parameter 
values include NR = 589,  r = 8, Pf = 0.1, mutLim = 4, 
mutProb = 0.5, NT  = 256. The outcomes of these tests 
are presented in Table 4. 
As shown in Table 4, the theoretical estimation of 
potential repertoire size is calculated as 608.21, while 
the mean potential repertoire sizes for exhaustive and 
NSMutation respectively are 608.10 and 608.40.  Their 
corresponding detection rates are 90.36% for 
exhaustive and 89.84% for NSMutation. Testing the 
statistical difference between their detection rates using 
the Z-test, gave a value of +0.085, which shows that 
their detection rates are not statistically different. 
 

 

 

 

 

 

 

 

 



  

Table 3: Experimental results generated from 8-bits data based on 100 trials for self set NS = 152, 160.  

NS 

 
NRo  

(Theoretical) 
NRo  

(Exhaustive  
algorithm) 

NRo  
(NSMutation 

algorithm) 

Mutation 
Occurrence 

(a) (b) (c) (d) (e) 

152 1068.62 1128.16 
(33.130) 

1127.62 (31.739) 1.807 (1.020) 

160 1102.61 1084.26 
(32.344) 

1091.14 (31.190) 1.768(0.992) 

 

 

Chart showing the potential repertoire generated theoretically, 
from exhaustive and NSMutation algorithms with 8-bit binary data
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Figure 3: Chart for 8-bits data that illustrates the theoretical estimates and mean population of potential repertoire 

based on 100 trial runs for both algorithms given each size of self-set. 

 
 

Table 4:  Test results of detection performance of the 
NSMutation and exhaustive algorithms over 10 trials. 

 
 Exhaustive NSMutation 

Theoretical NRo 608.21 
Experimental NRo 608.10 608.40 
Detection rates 90.36% 89.84% 
Z-test value                    +0.085 

 

7. ANALYSIS AND DISCUSSION 
In this section, the output of the experiments performed 
in section 6.2 are analyzed with the aim of discussing 
the features peculiar to NSMutation and comparing 
with the exhaustive algorithm in terms of tests 
conducted. This comparison is then extended to the 
other algorithms for an overview of all the detector 
generating algorithms.  



From the diagram of  Figure 3, it can be observed that 
the number of candidate detectors examined for the 
exhaustive algorithm increases exponentially with the 
size of the self-set. This confirms the limitation 
expressed by (Kim and Bentley 2001). This behavior is 
also exhibited by NSMutation, whose pattern of 
increase in potential repertoire closely resembles that of 
the exhaustive algorithm. This can be explained to be a 
result of the random nature of the self set, which is 
normally distributed. During the process of mutating a 
candidate detector for the NSMutation algorithm, the 
aim is to guide the candidate detector away from self 
set. But since the self set is randomly distributed around 
the search space, there is an equal probability of 
mutating the random detector away from or towards 
self set. Hence the impact of guided mutation cannot be 
guaranteed for random data, and the outcome is more or 
less a random generation of detectors. However, this is 
not the usual case for a clustered self set with well-
defined boundaries. Preliminary experiments performed 
in (Ayara, Timmis et al. 2002) to test this showed that 
the potential repertoire is almost linear with increase in 
the self set. Also refer to (Ayara, Timmis et al. 2002) 
for the pseudocodes of all the algorithms. 

The comparison of their detection rates in Table 4 
further confirms the similarities. The difference in their 
performance at detecting non-self was evaluated using 
the Z-statistic at a significance level of 0.05%, and the 
outcome showed that their detection rate performances 
were not statistically different.  

Although from Figure 3 it can be asserted that the 
NSMutation algorithm behaves similarly to the 
exhaustive, some extensive studies of the NSMutation 
algorithm (Ayara, Timmis et al. 2002), provide more 
information about some parameters of the algorithm 
that control its performance. They include the matching 
threshold (r), detector life-time rate (mutLim) and 
mutation probability (mutProb). These parameters can  
deteriorate its performance than its predecessor or 
speculatively better, if a good combination of 
parameters for the data set can be obtained. For 
example, when r = l (length of each string), the effect of 
the mutProb on the time complexity is more profound, 
even though there is a higher chance of generating good 
detectors due to the exact matching. The effect of 
mutProb is aggravated by a high value of mutLim. For 
example when l = 8, r = 8, mutLim = 4, and mutProb = 
1.0, mutation of a non-competent detector produces its 
image and if the mutant also matches self, further 
mutation just flips the image back to the original 
detector, thereby causing an alternation between the 
image and the original detector. The mutLim parameter 
thus causes this process to be carried out for a specific 
number of trials. However, as r << l, the effect of 
mutProb and mutLim pale into insignificance, since the 
value of r already triggers high time complexity. This 
parameterization factor for good performance of 

learning algorithms has been observed by (Bentley, 
Gordon T. et al. 2001). So the next question to be 
answered is “what parameter values for the NSMutation 
algorithm can make it outperform the exhaustive?” 
Altogether, the reviewed and normalized time and 
space complexities of all the algorithms, as shown in 
Table 5, reveal the characteristics in terms of 
computational complexity. While the time complexities 
of the exhaustive algorithm and NSMutation are 
exponential with respect to the size of self, the others 
have time complexities that are linear functions of the 
self. The linear algorithm, however, has the 
disadvantage of generating redundant detectors, as is 
the case with the exhaustive; this in turn limits its 
performance. However, the greedy algorithm achieves 
the best coverage for detection, due to the fact that it 
generates complete repertoires of detectors as claimed 
by (D'haeseleer, Forrest et al. 1996). The binary 
template, which derives its inspiration from the greedy 
also achieves similar coverage. Both greedy and binary 
template algorithms have higher computational 
complexity when compared to the linear algorithm. The 
greedy algorithm includes the process of checking that 
each detector generated represents a cluster of non-self 
to prevent redundancy and also ensure that efficient 
detectors are produced. Also the binary template 
algorithm includes similar processes of removing 
redundant detectors and ensuring that inefficient 
detectors are eliminated. Hence, these additional 
processes of guaranteeing non-self coverage and non-
redundancy incur extra time to complete the algorithms. 
It must be noted  that when the matching threshold r 
approaches length l  of each string in the search space, 
the linear time complexities of the linear, greedy and 
binary template with respect to the size of the self-set, 
may exhibit similar behavior as that of the exhaustive 
and NSMutation, due to the exponential value mr in 
their time complexity equation. 
In terms of space complexity, NSMutation has a higher 
space complexity that the exhaustive. The reason for 
this is that the NSMutation stores the detectors as they 
are generated for comparison with subsequent detectors 
in order to prevent redundancy. On the other hand, the 
linear, greedy and binary template incur more space 
complexity due to the storage of mr binary template 
strings that are stored and updated. However the binary 
template algorithm has a lower space complexity when 
compared with the linear and greedy algorithms. 
Another criterion for comparing the algorithms is the 
coverage of detectors. This factor measures the extent 
to which the detectors generated from the negative 
selection algorithm are fully representative of the non-
self set. Thus it thereby provides a means of 
determining the efficiency of the algorithm. If complete 
coverage is to be achieved, it implies that all non-self 
detectors must be generated. However, there is a need 
to maintain a balance between the time taken to 
generate detectors and getting a good coverage. This 
balance seems to be best achieved by the greedy 



algorithm. The algorithm is able to generate non-
redundant detectors that have high detection coverage, 
at minimal time complexity. 
In summary, it can be argued that the NSMutation is 
more or else the exhaustive algorithm since they expend 
similar time complexity and achieve as much coverage 
of non-self. However, NSMutation differs from the 
exhaustive algorithm because it includes checks for 
redundancy and tunable parameters that can induce 
different performance. When compared with the linear, 
greedy and binary templates, the simplicity of 
NSMutation makes it quite attractive as against the 
others that entail cumbersome procedures. Furthermore, 
only the exhaustive and NSMutation can be used with 
other matching rules. The linear, greedy and binary 
template algorithms are restrictive. They are limited to 
the r-contiguous bits matching rule, which renders them 
inextensible and inappropriate for other matching rules. 
The benefits of NSMutation thus include simplicity, 
high detection rate performance and extensibility. 

Table 5: Reviewed time and space complexities of all 
detector generating algorithms (refer to original 
equations in (D'haeseleer, Forrest et al. 1996)). 

Algorithm Time Space 

Exhaustive  O( ml.NS) O(l.NS) 
Linear  O((l-r+1).Ns.mr)+ 

O((l-r+1).mr)+ 
O(l. NR) 

O((l-r+1)2.mr) 

Greedy  O((l-r+1).Ns.mr)+ 
O((l-r+1).mr.NR) 

O((l-r+1)2.mr) 

Binary 
Template  

O(mr.NS)+ 
O((l-r+1).mr.NR) 

O((l-r+1).mr)+ 
O(NR) 

NSMutation O(ml.NS)+O(NR.mr)
+O(NR) 

O(l.(NS + NR)) 

  

8. CONCLUSIONS 
This paper has made a comparison between the 
different negative selection algorithms for generating 
detectors, and implemented a variation of the initial 
exhaustive algorithm. The results were presented using 
the time taken to generate detectors, as well as the 
detection rate coverage of the final detectors generated. 
It has been demonstrated that there are trade-offs to be 
made in deciding on the best algorithm for producing 
the detectors. The exhaustive algorithm takes 
considerable time (exponential in size of self data) and 
produces redundant detectors; the linear algorithm has a 
linear time complexity but also produces redundant 
detectors; the greedy algorithm produces a complete 
repertoire using up as much space as the linear 

algorithm, but has a higher computational complexity; 
the binary template produces a minimal set of efficient 
detectors at the expense of more time complexity; and 
finally NSMutation is similar to the exhaustive 
algorithm with the difference of eliminating redundancy 
and possessing parameters that can be optimized for 
better performance. However for structured data sets, 
the NSMutation has shown better performance in terms 
of time complexity, but there is still need for further 
verification. Thus, in a case where choice has to be 
made between both exhaustive and NSMutation, the 
latter has the advantages of possessing tunable 
parameters, eliminating redundant detectors, and being 
suitable for any matching rule. But, the decision lies 
with the constraints being met while implementing the 
algorithm in its target domain. Different domains place 
emphasis on different constraints that must be satisfied. 
These might include factors such as time to generate 
detectors; space storage used by the detectors; matching 
function; as well as the performance of detectors 
generated. Since no algorithm has managed to minimize 
all these constraints, trade-offs have to be made in 
choosing an algorithm for generating negative selection 
detectors. But it must be said that more analysis of the 
NSMutation algorithm will need to be carried out in 
order to determine the best combination of parameters 
that can improve it significantly. 
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Abstract 
 
A series of observations of a system over time is 
often used to characterize its normal behaviour. 
The problem of anomaly detection is that of find-
ing deviations in the characteristics of the sys-
tem. Anomaly detection algorithms inspired by 
the negative selection mechanism of the natural 
immune system have been proposed. This paper 
presents results obtained by employing an effi-
cient negative selection algorithm based on the r-
contiguous matching rule to detect anomaly in 
various forms of data. The algorithm presented is 
an extension of an existing detector generating 
algorithm to deal with m-ary alphabet strings. 
Results are obtained for three cases – assembler 
instructions, system calls and simulated time se-
ries. Finally, conclusions of the study are pre-
sented and future direction of the work, currently 
in progress, is indicated. 

1 Introduction 
The negative selection algorithm for anomaly detection is 
inspired by the way the natural immune system generates 
T-cells through a censoring process in the thymus. T-cells 
have receptors that bind with proteins. Only those that do 
not bind with self-proteins are released into the rest of the 
body1. These T-cells then perform the role of detecting 
non-self entities in the body by binding with them. To 
extend the same principle to other systems, Forrest et al. 
(1994) have proposed that the characteristics of the sys-
tem can be expressed in finite alphabet strings, with self 
strings corresponding to normal behaviour and nonself 
strings corresponding to anomalous behaviour. The 
anomaly detectors that are generated would be those that 
match any string not among the self strings. This method 
of generating detectors is known as negative selection. In 
this paper, we use the r-contiguous matching rule to de-
fine a match. Two strings are said to have an r-contiguous 
match if they are identical in at least r contiguous posi-

tions. This partial matching rule is used since two strings 
of a reasonable length rarely have an exact match. Wierz-
choń (2000) has investigated the discriminative ability of 
this matching rule. 

                                                           
1 The process T-cell maturation also involves positive selection, wherein 
only those T-cells that have an ability to interact with self major 
histocompatibility antigens are selected. 

Forrest et al. (1994) have presented a simple detector 
generating algorithm which could be used with any 
matching rule. D’haeseleer et al. (1996) have described 
more efficient algorithms based on the r-contiguous 
matching rule which run in linear time. The greedy detec-
tor generating algorithm (GDGA) (D’haeseleer et al. 
1996) generates detectors which cover more non-self 
space than other algorithms that have been proposed. This 
algorithm has been defined for a binary alphabet.  
In the present work, we introduce an algorithm that is an 
improvement over GDGA. This algorithm handles strings 
with higher alphabet size. It has the advantage of retaining 
the semantics of the information present in the strings. 
This is relevant in cases where a binary encoding of the 
string would be undesired. For example, in strings con-
structed from system call data, it is necessary to retain the 
uniqueness of the letters of the alphabet, where the alpha-
bet is defined by the set of all system calls. 
Section 2 explains the extended algorithm. Section 3 
presents the results obtained by this algorithm on simu-
lated time-series data, assembler instruction data and 
system call data. A discussion on some observations is 
presented in Section 4. Section 5 puts forth the conclu-
sions. Future direction of work is indicated in Section 6. 

2 Extension of GDGA for Higher Alphabet 
Size  

The greedy detector generating algorithm (binary GDGA) 
presented in D’haeseleer et al. (1996) uses a greedy heu-
ristic to achieve a better coverage of a nonself space. The 
algorithm has been defined for a binary alphabet. Here, an 
extension to the algorithm for a higher alphabet size is 
presented. The following notation will be used : 
A is the alphabet of size m. 
s is a string composed of symbols from A. 
ŝ is string s with its leftmost symbol removed. 
s.x is string s with x ε A appended to it.   



A template of order r is defined as a size l string consist-
ing of l-r unspecified positions and r contiguous symbols 
(ε A). ti,s is a template with string s forming the fully 
specified positions starting at position i. 
The right (left) completion of a template is a template 
string with the blank positions to the right (left) filled up 
with symbols from A. 
Two strings have an r-contiguous match if they are iden-
tical in at least r contiguous positions. Similarly, a tem-
plate matches a string if its fully specified positions are 
exactly matched at the same positions in the string. 
Arrays of dimensions mr·(l–r+1) are used for the creation 
of detectors. The rows of these arrays are indexed by 
strings composed of symbols from A. To get the numeri-
cal value of a string s, we give each symbol of A a unique 
integer value in [0, m) and then consider s to be a number 
expressed in base m number system. 
Boolean arrays CS and CS΄ are based on the set of self 
strings S. Integer arrays CR and CR΄ are based on the de-
tector set R.  
CS[s][i] (CS΄[s][i]) is false if there are no right (left) com-
pletions of ti,s unmatched by any string in S and true oth-
erwise. CS can be calculated using the recurrence relation-
ship of its elements in the following way: 
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CS΄ can be computed using a similar recurrence relation as 
for CS. 
CR[s][i] (CR΄[s][i]) is the number of right (left) comple-
tions of ti,s unmatched by any string in R.  
The recurrence relationship for computing CR similar to 
that of CS: 
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CR΄ can be computed using a similar recurrence relation 
as for CR. 
DS[s][i] = CS[s][i] ^ CS΄[s][i]  is a boolean value which 
specifies whether the template ti,s can be used for the 
creation of detectors.  
DR[s][i] = CR[s][i] x CR΄[s][i] gives the number of strings 
in the current detector set that are unmatched by ti,s. 
DR[s][i] is ‘valid’ if DS[s][i] is true.. 

To generate detectors, we pick the template corresponding 
to the maximum valid element of DR. The remaining 
blank positions of the template are filled up by traversing 
the DR array to the left and to the right, and adding at each 
step a symbol from A depending on which one represents 
the valid template with the highest number of strings not 
yet matched by the current detector set.  
The CR and CR΄ arrays need to be updated to account for 
the new detector added. This is done by zeroing those 
elements of the arrays that correspond to templates pre-
sent in the detector and re-computing the elements which 
are affected by this change. 
The process is continued until all valid elements of DR are 
equal to zero (which would indicate that the entire cover-
able non-self space has been covered by the detectors) or 
a pre-specified NR number of detectors are generated. 
This extended algorithm (m-ary GDGA) has the advan-
tage of not requiring the data to be represented in binary 
form thereby retaining the information content of the 
string.  
 
Space Complexity 
The dimension of the C and D arrays is mr·(l–r+1) While 
the C arrays are binary and hence require a bit for each 
element, the D array elements require to represent a 
maximum value of ml-r, which would require (l–r) ·log2m 
bits. Hence the space complexity of D arrays is  
O(mr·(l–r)2)  and that of C arrays is O(mr·(l–r)2). 
 
Time Complexity 
The time required for generating a detector is the sum of 
(a)  O(mr·(l–r)) to find the template corresponding to the 
maximum valid element of DR, (b) O(m·(l–r)) to fill up 
the (l–r) unspecified positions of the template, since there 
are position requires considering the m possibilities and 
(c) O(mr·(l–r)) for updating the C arrays. The time com-
plexity of the algorithm is hence O(mr·(l–r)·NR). 

3 Results 
The m-ary GDGA has been tested on three types of data – 
time-series, assembler instructions and system call traces. 
The behavioral patterns of each of the systems are ex-
pressed in strings of a finite alphabet by an appropriate 
mapping. The results are compared with those of binary 
GDGA.  

3.1 Time Series Data 
The application of negative selection algorithm to anom-
aly detection in time series data has been presented by 
Dasgupta and Forrest (1996). First, time series data is 
collected that adequately expresses the behaviour of the 
system. The range of variation [MIN, MAX] of the data is 
determined and the values are encoded in binary using a 
pre-specified number of bits. Then a window of a size 
appropriate to capture the semantics in data pattern is slid 
along the binary encoded time series and the binary string 



outlined by this window is stored as a self string. The 
detectors are generated based on the resulting self strings 
using the negative selection algorithm. In the present 
scheme, we modify the encoding method by using an m-
ary alphabet instead of a binary one. For example, with 
the rest of the procedure remaining the same, we may 
choose to map each point in the time series into a set of 
sixteen symbols corresponding to sixteen equally spaced 
points in the range [MIN, MAX], thereby obtaining self 
strings of a hexadecimal alphabet. Once the self strings 
have been generated by this process, m-ary GDGA is used 
to generate detectors. 
The time series we consider the Mackey Glass series. The 
Mackey-Glass equation is a time delay differential equa-
tion that has been proposed as a model of white blood cell 
production. It is given by 
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The values of the constants a, b and c are generally taken 
as 0.2, 0.1 and 10 respectively. τ is the delay parameter. 
Normal data is computed using τ = 30 and anomaly is 
introduced using τ = 17. Fig 1(a) shows the Mackey Glass 
series with anomaly introduced in the region [500, 1000].  
The self strings are generated for the normal data using 
the encoding scheme discussed above and detectors are 
generated for the same using m-ary GDGA. The strings 
corresponding to anomalous data are then matched with 
the detectors. A match would indicate the presence of 
anomaly. The success of the algorithm in detecting anom-
aly is measured in terms of the percentage of anomalous 
strings that are detected. 
Table 1 illustrates the results for binary GDGA and m-ary 
GDGA. Values for 1500 points of the Mackey Glass 
series were computed using fourth order Runge-Kutta 
method (Wan). Anomaly was introduced in the region 
[500, 1000]. The data was encoded using five bits. Hence 
the points were mapped to a set of thirty-two distinct 
values. 
The self strings used to generate detectors for binary 
GDGA were a concatenation of four five-bit binary en-
coded data points. The m-ary GDGA used self strings 
composed of four data points encoded in an alphabet of 
32 symbols.  
Each symbol of the 32-ary alphabet corresponds to 5 
symbols of the binary alphabet. Hence the matching 
length r = 10 for m = 2 can be compared with r = 2 for m 
= 32. Comparing the success for NR = 100, we see that 
there is a large difference in the success percentages (46% 
and 19% respectively for binary GDGA and m-ary 
GDGA). This can be explained as follows. The number of 
strings matched by each detector is given by (Wierzchoń 
2000)2: 
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2 This formula is valid only for r ≥ l/2. A general method to calculate 
this value is presented by Esponda and Forrest (2002). 

D2(20, 10) = 6144 and D32(4,2) = 3008. Thus the number 
of strings matched by a binary GDGA detector is more 
than twice that matched by an m-ary GDGA one. This 
results in a greater coverage by the former and thereby a 
higher success rate. However, in m-ary GDGA, we retain 
the semantics of the data unlike in binary GDGA where 
the r-contiguous match takes place across boundaries (the 
position between two 5-bit encoded data points defines a 
boundary.) 
Figures 1(b) and 1(c) show the performance of binary and 
m-ary GDGA respectively with NR = 100. dS is the num-
ber of detectors which matched with a self string. The 
height of the vertical lines in the graphs corresponds to 
the number of detectors activated (dS) when anomalous 
patterns were found. The dotted lines across the graphs 
indicate the region of anomaly. The blank regions of the 
graphs (dS = 0) indicate no detection of anomaly. This 
may be either because anomaly does not exist in the 
strings corresponding to those regions of the time series 
or because the given set of detectors is incapable of de-
tecting the anomalous strings.  
 

 

(a) Mackey Glass series for 1500 points. Anomaly is intro-
duced in the region [500, 1000] (indicated by the dotted 
lines). (b) and (c) show the number of detectors, given by 
height of vertical lines, that were activated when anomalous 
patterns were found. The size of the detector set (NR) used = 
100 and the self set size (NS) = 749. (b) is the performance 
of binary GDGA and (c) is that of m-ary GDGA. 

 
 

Figure 1: Performance of Binary and m-ary GDGA for 
Detection of Anomaly in Mackey Glass Series 



Table 1: Anomaly Detection in Mackey-Glass Series 

Success 
NR Binary GDGA 

m = 2, l = 20, r =10 
m-ary GDGA 

m = 32, l = 4, r = 2 

30 
50 

100 
200 

9% 
17% 
46% 
70% 

6% 
7% 

19% 
37% 

Encoding parameters 

Win. size = 4   Win. shift = 2   Self size NS = 749 

Success is the percentage of anomalous strings that are de-
tected. NR is the number of detectors being used. Alphabet 
size (m) is the number of symbols in the alphabet being used 
for encoding. Self length (l) is the number of symbols that 
the self string is made of. Matching length (r) is the match-
ing threshold for the partial match. Win. size is the number 
of data points that are concatenated (after being encoded) to 
create the strings. Win. shift is the number of data points 
that are slid across to get the next string. NS is the number of 
self strings that are created. 

 
It is seen that binary GDGA performs better than m-ary 
GDGA in the case of anomaly detection in time-series 
data such as the Mackey Glass time series.  The detectors 
generated by the former algorithm cover more string 
space than that of the latter. This contributes to the better 
performance of binary GDGA. However, m-ary GDGA 
has the advantage of generating detectors for strings 
which encode the system characteristics in an alphabet of 
greater size. This would be relevant when there is a re-
quirement to encode data in a higher alphabet. 

3.2 Assembler Instruction Data 
When a virus attacks a binary file it results in the modifi-
cation of the file, which may be viewed as an anomaly in 
the system. There are various ways in which viruses mod-
ify binary files. Here we consider two methods. The first 
is a simple case of Single Mutation wherein a single in-
struction in the file is modified. The second is a more 
complicated modification in which virus code is attached 
to the file, resulting in the infected file becoming a source 
of infection. Most viruses which affect executables are of 
the second form.  
To detect anomaly in binary files, the file to be protected 
can be represented in the form of a string of assembler 
instructions. The size of the alphabet is the size of the 
instruction set. Self strings can be constructed in by slid-
ing a window across the assembler instructions in the 
same manner as discussed in Section 3. Detectors are 
generated for the resultant self strings which are used for 
anomaly detection in the file.  

The detection of anomaly in binary files modified by 
single mutation and by a file infector virus are discussed 
below.  

3.2.1 Single Mutation 
Tests were conducted for a C file compiled for a Pentium 
processor3. gcc was used to generate the assembler code 
from the C code using the –S option. The assembler in-
structions were extracted and strings were generated by 
sliding a window across the trace. Detectors were gener-
ated for these strings. The assembly code was then altered 
by changing a single instruction, and the strings thereby 
generated were checked for anomaly. The m-ary GDGA 
was used to generate detectors.  
The success of these detectors in identifying anomaly is 
shown in Figure 2. The most commonly used instructions 
were taken as the alphabet, with size of 16.The results 
were averaged over 1000 iterations. Each set had 3 detec-
tors. Considering multiple detector sets is relevant in the 
case of a distributed system. There may be many nodes in 
the system and each could be given a set of detectors. The 
overall probability of anomaly detection increases with 
greater number of detector sets. 

 

 
 
 

Figure 2: Performance of m-ary GDGA on Assembly 
Instruction Data 

Alphabet size m = 16, win. shift = 2, matching length r = 2, 
number of self strings NS = 35, number of detectors per set 
NR = 3. Number of iterations = 1000. 

 
The effect of varying the window size, and thereby the 
string length, is demonstrated in Fig 2. Increasing the 
string length while keeping the window slide value and 
matching length constant results in an increased success 
rate. This is because a detector of greater length covers a 
greater area of non-self, the matching length remaining 

                                                           
3 The method of creation of strings is given in the appendix. 



the same. However, the number of holes, or non-
coverable non-self space (D’haeseleer 1996) increases as 
well.  

3.2.2 File Infector 
File infector viruses attach themselves to executable code. 
They activate when an infected file is run, and then usu-
ally remain in memory. Thereon any non-infected execu-
table that runs becomes infected. 
A test virus was generated using a commonly available 
virus creation tool known as Instant Virus Production Kit 
(IVP). The virus was programmed to infect mem.exe, a 
DOS executable. The description of this process is given 
in the appendix. 
The self set was created by disassembling the executable 
and sliding a window of size four across the trace of as-
sembler instructions, moving in steps of two, as in Section 
3.3.2. Detectors were created for the self strings. The 
executable was then infected using the test virus, and the 
strings generated from the infected file were matched with 
the detectors to check for the presence of  an anomalous 
sequence. 
Table 2 shows the performance of binary and m-ary 
GDGA. The process of testing was as follows. First, a 
large pool of detectors (1000) was created for the 4854 
self strings corresponding to the uninfected mem.exe. 
Then a given number of detectors were randomly chosen 
from the pool and were used to detect anomaly in the set 
of strings corresponding to the infected file. The results 
are averaged over 1000 iterations. 
 

Table 2: Anomaly Detection in Assembler Instruction 
Data 

ND 
NR 

binary GDGA m-ary GDGA 

10 0 0 

50 1 2 

100 3 4 

200 6 7 

500 14 18 

Parameters 

NS = 4854     Win. Size = 4     Win. Shift = 2 

 

NR is the number of detectors. ND is the number of 
anomalous strings that were detected by the NR detec-
tors. NS is the number of self strings. The number of 
anomalous strings was 151. The results are averaged 
over 1000 iterations.  

 
Although the detectors do not detect the total number of 
anomalous strings (=151), the presence of at least one 

anomalous string would indicate a modification in the 
file. For self sets which vary over time, a threshold value 
for the number of allowable anomalous strings could be 
set. If the number of anomalous strings detected exceeds 
this threshold value then the system may be deemed to 
contain anomaly. 
The table demonstrates the relative performances of bi-
nary and m-ary GDGA. The performance of m-ary GDGA 
is marginally better than that of binary GDGA. This indi-
cates the advantage m-ary GDGA has when the informa-
tion is encoded in a higher alphabet. 
The size of the alphabet (=147) considered here is much 
larger than that considered in Section 3.3.1. This results in 
a lesser fraction of area being covered by these detectors 
compared to the detectors of smaller alphabet. To illus-
trate this, we calculate the area covered by the detectors 
generated in Sections 3.3.1 and 3.3.2, using Equation (2), 
and divide it by the area of the total string space. In both 
cases, four instructions are concatenated to make a self 
string, and the window slide value is two. The matching 
length, measured in number of instruction, in both cases is 
two. The alphabet size, m, of detectors R1 in Section 3.3.1 
is 16 and of detectors R2 in Section 3.3.2 is 147. Using 
Equation (2), we have D16(4, 2) = 736 and D147(4,2) = 
64533. The fraction of the total string space covered by 
R1 is 736/164

  ≈ 1.12e-2 and that by R2 is 64533/1474 ≈ 
1.38e-4. Hence the accuracy of anomaly detection of R2 is 
substantially lesser than R1. 

3.3 System Call Data 
The efficacy of short sequences of system calls as dis-
criminators for several types of intrusion has been dis-
cussed by Forrest et al. (1996) and D’haeseleer et al. 
(1996). Here we present results of using binary and m-ary 
GDGA to detect anomaly in a system call trace of a Tro-
jan code4 for login (UNM). 

3.3.1 Intrusion detection based on login system call 
trace 

Login is a program used when signing into a system. It 
is also used to switch from one user to another. Here, the 
trace of system calls issued by login are used to classify 
system behaviour. An anomalous behaviour would be 
indicative of a possible intrusion in the system. 
A normal login trace (LoginNormal) was used to col-
lect the behavioral patterns of legitimate usage of the 
program. The data contain pairs of values in the form 
(pid5, system call). Strings were created by sliding a win-
dow of size four across system calls with the same pid, 
with windows shift value as two. Detectors were gener-
ated for these strings using m-ary GDGA. Then similar 

                                                           
4 A Trojan code (Trojan Horse) has been defined by Dan Edwards as “a 
malicious, security-breaking program that is disguised as something 
benign.” (Foldoc). 
5 Since there may be multiple processes created by a single program, it is 
required to indicate the process ID (pid) as well. 



strings were constructed for a Trojan version of login 
(LoginRecovered) and were checked for anomaly using 
the detectors previously generated. The results are pre-
sented in Figure 3(a).  
The data considered in Fig. 3 is the trace of system calls 
with the pid of 801 from LoginRecovered. The trace con-
tained 386 system calls, from which 192 unique strings 
were constructed. The x-axis measures the position of the 
anomalous string in units of system calls. The height of 
the vertical lines corresponds to the number of detectors 
that matched with anomalous strings. Hence the lines in 
the region [0,14] indicate that anomalous behaviour is 
detected in the first fourteen system calls  
 

 
 

Figure 3: Performance of m-ary GDGA on System Call 
Trace of Trojan Version of Login.  

(a) anomaly detection by m-ary GDGA detectors. Alphabet 
size m = 164, win. size = 4, win. shift = 2, string length l = 
4, matching length r = 2 (b) anomaly detection by binary 
GDGA detectors. Number of bits used to encode a system 
call nb= 8, win. size = 4, win. shift = 2, string length = win. 
size x nb = 4 x 8 = 32, matching length r = 8. 

Number of self strings from which detectors were generated, 
NS =178. Number of detectors NR = 89. Number of strings 
constructed from the anomalous trace = 192. 

 

Figure 3(b) demonstrates the performance of binary 
GDGA on the same data. The 164-symbol alphabet was 
encoded in 8 bits. The binary encodings of four con-

tiguous system calls were concatenated to form thirty-
two bit strings. It is seen that more detectors are 
matched in 3(b) compared to 3(a). The explanation for 
this has been given in Section 3.1. 

3.3.2 False positives 
We consider here the occurrence of false positives in the 
detection of anomaly in system call data using binary and 
m-ary detectors. 
LoginNormal consists of seven relevant traces. An ex-
haustive detector set is generated for each of these traces. 
The detector set corresponding to a trace is then matched 
against the strings corresponding to the entire LoginNor-
mal trace. The number of system call sequences tagged as 
anomalous by these detectors is noted. Since the each of 
the traces that are checked for anomaly are normal data, 
the detection of anomaly in them would be a false posi-
tive. Table 3 shows the occurrence of false positives in 
anomaly detection using binary and m-ary GDGA detec-
tors. 
 
Table 3: False Positives in Anomaly Detection in System 

Call Data Using Binary and m-ary GDGA 

binary GDGA m-ary GDGA 
Trace 
PID 

F.P. Exh. 
NR F.P. Exh. 

NR 

19563 220 242 74 130 

2188 109 238 74 130 

4938 109 238 74 130 

509 109 238 74 130 

598 109 238 74 130 

8954 192 232 72 129 

9280 109 238 74 130 

 

Trace PID is the process ID of the trace based on which the 
detectors have been generated. F.P. is the number of false 
positives, or number of (normal) system call traces which 
were flagged as anomalous. For each case, the detectors 
were matched against the entire LoginNormal trace to find 
the number of false positives. Exh. NR is the size of the ex-
haustive detector set.  

Win. size = 4. Win. shift = 2. Alphabet size m = 164. Size of 
LoginNormal trace = 5937.  

 

An exhaustive detector set is considered so as to present 
a definitive measure of false positives. As is seen from 
the table, m-ary GDGA detectors have a lower count of 
false positives that binary GDGA detectors. This is due 
to the retention of semantics of the data by m-ary 
GDGA. 



4 Discussion 

4.1 Situation favouring m-ary GDGA 
The utility of m-ary GDGA in detecting anomaly in vari-
ous forms of data has been presented in Section 3. m-ary 
GDGA would be preferred when a binary encoding would 
result in a loss of information content of the data.  
In some cases, even when data originally encoded in a 
higher alphabet is considered, binary GDGA may perform 
better than m-ary GDGA6. However, as is explained be-
low, this occurs when the difference between alphabet 
size m and the next highest power of two is small. For 
higher values of this difference, m-ary GDGA would 
perform better. 
It was seen is Section 3.1 (time-series data) that binary 
GDGA had a better performance than m-ary GDGA. The 
alphabet size considered was thirty-two. Hence five bits 
were used to encode a symbol, which were then concate-
nated to create binary strings of length twenty. In general, 
if the alphabet size is m and the m-ary string length is l, 
then the binary string length lB would be given 
by l . When m is a power of two then each of 
the binary strings would be valid (self or non-self) 
strings. However, if m is not a power of two then there are 

strings which are invalid, i.e., they do not corre-
spond to any point in the unencoded space. However, 
binary GDGA cannot distinguish between an invalid 
string and a non-self string. Hence detectors are generated 
to cover the invalid string space as well. When is 
small then this detector ‘wastage’ is small. However, for 
larger values, this may present a problem. In other words, 
when the value of m is significantly lesser than the next 
higher power of two, then the number of invalid binary 
strings is higher, resulting in a lower performance of 
binary GDGA compared to m-ary GDGA (which does not 
encounter this problem). This behaviour is seen in Section 
3.3 (assembler instruction data), where m = 147, which 
results in the size of invalid binary string space to be 
nearly eight times the valid space. 

  lm
B

⋅= 2log2
Bl2

lmB −l2

ll mB −2

To counter the problem of wasted detectors, the invalid 
string space may be included into the self space so that 
detectors are not created to cover that space. However, 
this once again would pose a problem, since the size of 
invalid space may be many times the valid space, as was 
seen in the previous example. 

m-ary GDGA allows retaining the original encoding of 
data. Hence the problem of invalid strings is not encoun-
tered. The utility of m-ary GDGA would be higher in 
these circumstances. 

                                                           
6 To create self strings from this m-ary data for binary GDGA to operate 
upon, each symbol of the m-ary alphabet can be encoded into a binary 
string of length log2m. 

4.2 Choosing the matching length 
For a given self set of size NS, string length l and detector 
set size NR, the matching length r can be chosen experi-
mentally so as to maximize accuracy of detection.  
For a given matching length r, detectors of a given num-
ber are generated and are matched against the entire non-
self set. The number of undetected non-self strings NN’ is 
noted. The optimum value of r would be that correspond-
ing to least value of NN’. 
A smaller value of r would enable a detector to cover  
more non-self space (as can be seen from Equation 2) and 
hence would be expected to result in a lower value of NN’ . 
However at the same time, the number of holes, NH , in 
the space also increases, thereby increasing the number of 
strings that are undetectable by the given set of detectors. 
Hence the optimum value of r can be found by noting the 
point at which the value of NN’ reaches the minima. 
The disadvantage of this method is that it is computation-
ally expensive. However when the non-self set is not very 
large, this method can be used.  

5 Conclusions 
The negative selection algorithm has the advantage of 
distributability. Any subset of the complete detector set 
can be used for anomaly detection. This is useful when 
there are multiple anomaly detection nodes. 
The performance of the m-ary GDGA has been studied. It 
has the advantage of retaining the semantics of the data. 
This is particularly relevant to system call data and as-
sembler instruction data where a binary encoding of the 
data would result in a loss of the semantics of informa-
tion. Its disadvantage is its greater time and space com-
plexity compared to binary GDGA. 
The lesser number of false positives in the case of m-ary 
GDGA compared to that of binary GDGA indicates the 
better performance of the former when the original encod-
ing is non-binary. 
The usage of m-ary GDGA is particularly advantageous 
when the value of alphabet size m is significantly lesser 
than the next higher power of two.  

6 Future Work 
Current work is in the direction of evaluating the utility of 
negative selection to various data (Kim and Bentley 
2001). An equivalent ‘positive selection’ method is being 
used for this evaluation, wherein the entire set of self 
strings is used for anomaly detection based on the r-
contiguous matching rule.  
An understanding of the r-contiguous distance and its 
related space would be important in creating an improved 
detector generating algorithm. The possibility of embed-
ding the r-contiguous space into Euclidean space (Bour-
gain 1985) is presently being studied for the purpose of 



visualizing the former space, and for borrowing ideas 
from coverage algorithms developed for Euclidean space. 
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Appendix 
(a) Creation of m-ary strings from C code. 
m-ary strings are created from a given C code (sfile.c) 
using the following piped sequence of commands: 
gcc -S - sfile.c -o tmp/sfile.s  ; 
cat tmp/sfile.s   |  
sed -n 6~1p       | 
cut -f2           | 
cut -d" " -f1     | 
grep -v "[:|\.]"  > tmp/sfile.log                           
 
The file sfile.log now contains the sequence of assembly 
instructions corresponding to sfile.c. This file is then 
converted to a sequence of m-ary strings by a replacing 
each instruction with a unique identifier, and then sliding 
a window across this data.  
(b) Virus creation using Instant Virus Production Kit 
Instant Virus Production Kit (IVP) is a virus creation tool 
that can be used to create viruses by specifying certain 
parameters. A configuration file is used which has pa-
rameters such as given below: 
• Infection type.  exe, com, both, trojan. 
• Overwriting or appending upon infection. 
• ID the virus uses for checking for infection. 
• Encryption. 
• Change Directories. 
• Set the INT24 handler. 
• Max number of files to infect at runtime. 
• Time based activation options. 
IVP generates a self-propagating virus assembly code 
based on these parameters. The code is compiled, linked 
and then executed to infect a dummy executable file. This 
dummy file becomes the source of infection 
This tool was used to create a virus which was customized 
to infect mem.exe by specifying the name of this file in 
the search string of the virus. 
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Abstract 
 
Ten years ago, a group of researchers, led by 
Francisco Varela, were proposing an alternative 
vision of the immune system main behavior and 
function. I was part of this group. This new 
vision saw the immune system not as behaving 
distinctively with self and non-self or according 
to any dichotomy imposed a priori and from 
outside (the self-recognition vision), but rather as 
behaving in a unique way. From this indifferent 
behavior, any external impact would 
progressively been treated in two different ways, 
reactive and tolerant, but now, consequently and 
from inside the system (the self-assertion view). 
This paper will recall, through a very artificial 
simulation, the difference existing between these 
two visions.  Also at that time, we believed that, 
from an engineering perspective, this new vision, 
emphasizing more the adaptability and the need 
for endogenous constraints than the recognition 
and the defensive ability, although less obvious 
to accept than the classical defensive one, should 
be more beneficial. These last ten years proved 
that we haven’t been convincing enough, and in 
this paper I resume the crusade.  

1 INTRODUCTION 
Ten years ago, Varela, Coutinho and Stewart (Varela et 
al., 1988; Varela and Coutinho, 1991; Stewart, 1994) 
were proposing and defending a new vision of the 
immune system, largely in the continuation of Jerne’s 
intuition and model (Jerne, 1974), in which the “self” and 
“foreignness” dichotomy collapses, for the system is 
complete unto itself. Based on simulations of the immune 
idiotypic network and some experimental data, they 
published several papers, although not in the mainstream 
journals of immunology. In an idiotypic network, there is 
no intrinsic difference between an antigen and an 
antibody, and any node of the network can bind and be 
bound by any others.  My role is this group was two-fold. 
At that time not a biologist and still not today, I was 
responsible with Vera Calenbuhr and Vincent Detours for 
the development of a series of computer simulations that 
have been described in (Detours et al., 1994; Bersini and 

Calenbuhr, 1996; Calenbuhr et al., 1996). I was also 
responsible for trying to initiate the influence of this new 
“reading” of this biological system for the conception of 
engineering artifacts. A mission I tried to fulfill in 
(Bersini and Varela, 1993; Bersini, 1999). 
Although we pushed hard for this alternative vision, we 
need to admit today that the classical view of the immune 
system as a defensive system, first able to distinguish 
between dangerous and innocent external impact, and thus 
to defense against the dangerous ones, has been the most 
influential one from an engineering perspective. It was 
clearly the most appealing to adopt, but it’s a pity. First, 
this is a vision that is facing more and more opposition 
among the biologists themselves. But beyond that, I am 
convinced that we don’t need to know how the immune 
system distinguishes, if it does so, between good and bad 
stimuli, in order to build performing two-classes 
classification system or any pattern recognition 
mechanism. Also, we don’t need to know how the system 
creates good markers of self, if it does so, to build 
performing clustering and self-organizing systems. And 
finally, we don’t need to know how the system protects 
the body from external damages, if it does so, to build 
good protective system for computers. The Panda 
antiviral system that by computer has adopted for one 
year now is one good illustration, among many, of that. I 
don’t believe the developers of such effective software 
needed to know anything about how the immune system 
fights natural virus to develop their system for artificial 
ones.  
In the first section, largely relying on a recent excellent 
survey of the Stanford Encyclopedia of Philosophy 
(Tauber, 2002), I will try to summarize what main lines of 
criticisms attack the vision of immune system as able to 
distinguish self from non self and able to protect from 
non-self. In the second section, I will present a very 
simple software simulation that will make easier to 
understand the difference between the self-recognition 
and the self-assertion views. This simulation is very 
reminiscent of a lot of simulations that we published years 
ago, although I’ll try to simplify it to the basics in order to 
really shed the light on the key differences.  
Finally, the last section will try to defend why the self-
assertion view should inspire in a more creative way the 
conception of engineering artifacts. This vision leads to 
strongly adaptive systems, both parametrically and 



structurally, but whose adaptability mainly aims at 
satisfying endogenous constraints instead of responding to 
exogenous impacts. This constraint satisfaction might 
provide the system with several adaptive advantages as, 
for instance, the capacity to respond to a large diversity of 
external stimuli and to memorize in an economical way a 
repertoire of adapted responses when facing a non-
stationary environment.  

2 THE PROBLEMS WITH SELF AND 
NON-SELF  

Although it’s important not to confuse the alternative 
view proposed by Polly Matzinger (Matzinger, 2002), 
today best known critics of classical immunology, with 
the one proposed by Varela’s group, part of the criticisms 
addressed by Matzinger to classical immunology has to be 
taken as important flaws of this classical view. Why the 
immune defenses do not protect us from the air we 
breathe, the food we eat, the fetuses we carry, the tumors 
that kill us (even then it should)? Why are a lot of our 
lymphocytes autoreactive without any sign of 
autoimmune diseases? Indeed, a lot of evidences in recent 
years have shown that autoimmunity is a normal finding 
in healthy individuals. Clearly the problem with self and 
non-self lies in the determination, namely the nature and 
the location, of the frontier. The designation of “self” and 
the “other” ignores that such neat divisions were adopted 
with a certainty that remain problematic.  
One first relaxation to the self/non-self dual view of the 
immune system is to maintain the duality, i.e. the immune 
system keeps two ways of being in response to external 
impact: defensive and tolerant, but not depending on an 
evasive frontier to cross. It is the position adopted by 
Matzinger who insists in getting rid of the self/non-self 
discrimination as the central tenet of immunology. What 
she proposes instead is an immune system that just fights 
what is dangerous for it. So the dichotomy is maintained 
but self/non-self is simply replaced by 
dangerous/inoffensive. The fact that this move finally 
consists in this simple semantic substitution makes a lot 
of immunologists very skeptic against Matzinger position. 
However it appears that fighting danger rather than 
foreignness entails doctors to adopt therapeutic strategies 
that show great successes for certain serious diseases.  
Now exploring more logically Matzinger’s position, and 
although the full model is still somewhat confused, it is 
important to understand better what does the immune 
system see as dangerous and why it does so. One view, 
the less radical one, would see the danger as resulting 
from some specific characteristic of the external 
perturbation.  It might be an additional feature of the 
invading antigen. In such a case, from the outside, the 
external impact will be, prior to any interaction, 
dangerous or not, and the immune system would still need 
to somewhat behave in a dichotomous way, first 
recognizing the danger then fighting it. The external 
environment of the immune system will still be separated 
in two zones: a dangerous and an inoffensive one. This 

interpretation of what is dangerous or not is not such an 
exciting one, because it still demands from the system the 
ability to discriminate and to defend. The self/non-self 
frontier is just re-defined but still exists outside the 
system. 
The most radical view, and for reasons to be discussed 
later, makes Matzinger and Varela closer than they appear 
to be (in her “science” article Matzinger said that after 
many years of finding Varela’s model intriguing she 
finally agrees). Varela’s view would see the danger as a 
consequence of the interaction between the external 
impact and the current state of the immune system. In 
such a case, a stimulus is no more dangerous per se, but is 
dangerous in the current context of the immune system. 
An outside separation in two classes, making the immune 
system behaves in two ways, simply collapses. We remain 
with an immune system behaving in one only way but, 
depending on its current state and the nature of the 
impact, proposing different responses to it.  For instance, 
a same external impact could drive the system to react 
differently at different times.  
The reason why this second, more innovative 
interpretation, is akin to Varela and his group vision can 
be easily understood by reading the following excerpt 
from the Stanford Encyclopedia (Tauber, 2002) about the 
later vision: 
“When the immune system is regarded as essentially self-
reactive and interconnected, the meaning of 
immunogenicity, that is reactivity, must be sought in some 
larger framework. Antigenicity then is only a question of 
degree, where “self” evokes one kind of response, and the 
“foreign” another based not on it intrinsic foreignness, 
but rather because the immune system sees that foreign 
antigen in the context of invasion or degeneracy. …. In 
the Jernian network, “foreign” is defined as perturbation 
of the system above a certain threshold. Only as observers 
do we designate “self” and “non-self”. From the immune 
system perspective it only knows itself….   While host 
defense is a critical function, it is hardly the only one of 
interest. Indeed the immune system might be regarded as 
primarily fulfilling an altogether different role if its 
phylogeny is carefully examined….   Immune reactivity is 
determined by context where agent and object played 
upon each other…..” 

3 A VERY ARTIFICIAL MODEL TO 
DISTINGUISH THE TWO VISIONS 

In this section, I will describe a very simple model built in 
a two dimensional space and very reminiscent of several 
models that I did build years ago with my colleagues John 
Stewart, Vera Calenbuhr and Vincent Detours (Detours et 
al. 1994, Calenbuhr et al., 1996, Bersini and Calenbuhr, 
1996). It will provide an easy to understand illustration of 
the difference between the self-recognition and the self-
assertion visions.  
We will suppose that any immune cell (they could be 
antibodies) be identified by its position in a two 



dimensional space. In agreement with the key-lock 
binding of immune cells with antigens, we will also 
suppose, like indicated in figure 1, that any immune cell 
exerts an affinity in a zone symmetrically situated with 
respect to its position. What we want to model by this 
artificial construction is the possibility for a cell to bind 
an antigen when it presents a shape symmetrical with 
respect to the one of the antibody.  The affinity is not 
restricted to the symmetrical position but extends to a 
square domain of size L, the strength of the binding 
decreasing with the distance to the center of the square.  
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In this case Affj is computed just by summing the field 
exerted by the antigens.  
         Affj = Σi affinityOfAntigeni 
 
Consitently with immunological facts, the cells will grow 
in concentration, i.e. simulating an immune response, if 
they receive a stimulating field in between two thresolds:  
low and high, whose precise values must be known for  
the simulation to run. The field must be sufficient enough 
but not too high due to the bell shape curve of the 
maturation and the proliferation of B lymphocites and 
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The simulation proceeds as follows. Initially, cells are 
recruited randomly in the system, but in the absence of 
antigens, so with no stimulating field, they can’t survive 
and disappear as soon as they get in. When an antigen 
enters the space, the simulation behaves as illustrated in 
figure 2. 
 
 
 
 
 
 
 
 
 
Figure 2: The
antigen and im
The antigen, 
symmetrically 
and to grow in
suppressing f
decrease in co
Once it is canc
for its disappe

 
The antigen
 reciprocal stimulation and elimination of 
mune cells 
now by the field of affinity it exerts 
to its position, allows some cells to survive 
 concentration. These cells in turn exert a 

ield on the antigen. The antigen will 
ncentration until it disappears completely. 
elled from the system, the cells responsible 
arance are no longer stimulated and slowly 

The immune 
cells 



die, driving back the whole system to the initial situation: 
random recruitment of not surviving cells.  
Playing with the concentration increasing and decreasing 
rates (for instance the constant k), the immune cells can 
take some time to disappear, akin to a sort of inertial 
memory of the antigen encounter. The next time a same 
antigen gets in, its cancellation will be faster like for any 
secondary immune response.  
What needs to be understood, in contrast with the section 
to come, is that, in the classical case, cells show affinity 
only with antigen and not at all among themselves, 
although they occupy the same two-dimensional 
description space. Although nothing really differentiates 
an antigen from any cell, there must be a magical demon 
to tell the cells that the dot in the space is an antigen and 
not a cell.  

3.2 THE SELF-ASSERTION VIEW 
In this less classical view, all cells bind to all cells. To 
quote again the Encyclopedia: “there is no essential 
difference between the “recognized” and the 
“recognizer”, since any given antibody might serve 
either, or both, functions.  Immune regulation is based on 
the reactivity of antibody with its own repertoire forming 
a set of self-reactive, self-reflective, self-defining immune 
activities”.  
In the simulation now, the way we will compute the Affj 
received by any cell is as follows: 
 
Affj = αΣi affinityOfCelli  + β Σi affinityOfAntigeni 

 
This time, the affinity received by any cell is a weighted 
sum of the exogenous stimulation of the antigens and the 
endogenous stimulation of the cells themselves. Give a 
value 0 to α and you are back to the previous case. There 
is no way for any cell to discriminate between the 
exogenous and the endogenous impact.  All impacts mix 
together to stimulate the change in concentration of any 
immune cell.  

   Figure 3:  Snapshot of the self-assertion simulation 

In the absence of any antigen, the simulation goes as 
shown in figure 3 (a snapshot of the simulation). The 
simulation slowly produces a sort of line or a band of self-
sustained cells. Due to the way the affinity is computed 
(symmetrically with respect to the center of the space), 
cells in the line mutually stimulate themselves. A part of 
the line sustains another part of the same line. We speak 
of self-assertion since, indeed, this line can be roughly 
viewed as a signature of the immune self.   
 
As shown in figure 4, first the system needs to be 
triggered off, and during the first time steps a lot of cells 
are recruited and very few are killed. During a second 
period, when the line of self-sustained cells begins to 
form, a lot of cells (not integrated in the line) are killed. 
This elimination phase can be roughly assimilated to the 
so called clonal selection phase taking place during the 
prenatal development and exercising a purging function 
of self-reactive cells. It is the period during which the 
tolerant zones are learned by the system itself. Finally the 
system tends to stabilize its rate of destruction and, while 
working at normal regime, integrates and kills new cells 
at a constant rate.  
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Figure 4: rate of disappearance of cells as a function of 
time 
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       Figure 5. Number of cells as a function of time 



In figure 5, plotting the number of cells as a function of 
time, again you can see the three successive phases of the 
simulation: first very few cells, then a short triggering 
period when a lot of new cells are recruited, and finally a 
stable regime. 
One key observation is that the presence of the line 
divides the space in two zones: a reactive zone on the 
right and a tolerant zone on the left. If you add an antigen 
on the left, it will be tolerated since there is no cell on the 
right able to bind it. In contrast, an antigen on the right 
will be rapidly destroyed since a lot of cells on the left are 
still able to bind it. Basically the shape of the line is 
responsible for this division of the space in these two 
zones.  
It must be clear that these two resulting zones are not 
shaped from the outside. There is no a priori division of 
the space into reactive and tolerant zones. This division is 
self-asserted by the system. The system creates, by its 
own evolution, its own zone of tolerance and own zone of 
reactivity.  You might ask why a completely symmetrical 
simulation lead to unsymmetrical outcome. It is a simple 
artefactual effect of the random generation of cells that is 
amplified in time. 
However the final separation of the space in a tolerant and 
a reactive zone will always be in relation with the history 
of the system. If you initially favor the recruitment in a 
given zone, this zone will naturally tend to become the 
tolerant one, a finding that qualitatively agrees with the 
Burnett’s clonal selection theory.  
This qualitative phenomenon i.e. the emergence of some 
geometrical patterns of self-sustained cells dividing the 
space in tolerant and reactive zones is very robust and 
largely independent of the values given to the parameters. 
This explains why I don’t need to indicate the precise the 
values taken by the parameters of the simulation: α, β, 
low, high. The same qualitative outcome will be observed 
for a large range of values.  
However, what’s of crucial importance here is that no 
recognition and discrimination is at work. The system 
does not need to discriminate between an immune cell 
and an antigen, between self and non-self or along any 
prior arbitrary division applied to its biological 
environment.  

4 TAKING AN ENGINEERING 
PERSPECTIVE 

We are not biologists but are trying to be influenced by 
biology to create new ways of designing useful artifacts. 
As I already wrote in a previous paper (Bersini, 1999), I 
believe that the self-recognition interpretation of the 
immune system is not the most fruitful one. The basic 
reason is that this interpretation does not need biology to 
be expressed and understood. That the immune system 
can discriminate between two classes of external impacts 
can be easily translated into a classical pattern recognition 
problem. So far I haven’t read any better ways of 

classifying, clustering data or constructing defensive 
systems, beyond classical ones, which have been 
discovered thanks to the immune analogy.  
Also I don’t want to pretend that the self-assertion view 
has been much more productive. Obviously, there have 
been fewer trials. In (Bersini, 1999) I discussed several 
engineering applications I was involved with that gained 
some benefits from applying here and there hints coming 
from immunology. The principal one that was 
implemented in all these application is the endogenous 
double plasticity inspired from immune networks. This 
endogenous double plasticity complies with the following 
principles: 

1. the structural adjustments (akin to the 
recruitment of new cells) intermittently occur 
following a longer time scale than the parametric 
adjustment.  

2. the structural plasticity amounts to the addition 
of new elements and the suppression of 
redundant elements from the system 

3. again like in the artificial world shown above, 
the structural adjustments are dependent on the 
temporal evolution of the internal parameters (in 
the simulation, the current concentration of the 
cells). When and how to perform a structural 
change should depend on data related to the 
dynamics of the parametric change. So the 
network endogenous behavior and now 
exogenous criteria will guide these structural 
changes. Remember the immune system which 
only sees and knows itself. 

4. these structural endogenous alterations have to 
be done in a network spirit by applying simple 
heuristics like “compensate for the weakest 
elements”, “maintain diversity”, “suppress 
redundancy”. 

In the same paper, I presented three practical illustrations 
of systems capable of evolving in time their structure and 
parameters while executing their task: neural net 
classifiers, autonomous agents that adapt by 
reinforcement learning, and controllers of chaotic 
systems. 
In none of them, the biological influence was so strong to 
claim that I could not have done the same in the absence 
of any immunological knowledge, but in all of them, the 
way I tackled the problem, reinforcing the adaptability 
and the respect of the endogenous constraints, came from 
this knowledge.  

5 CONCLUSIONS 
The paper basic motivation is to better understand the 
difference existing between the classical self-recognition 
and the more “exotic” self-assertion visions of the 
immune system. Although the later is gaining more and 
more attention in the biological community, it is not 



receiving the same attention in an engineering 
perspective. I believe it should. 
We all need to admit that the immune algorithms, 
whatever they really turn out to be, did not provoke the 
same wave of interests as genetic algorithms or neural 
nets did for engineering applications. One key reason 
could be that in their initial presentation, both GA and 
neural nets were proposed in a very coherent and 
convincing way as simple algorithms, easy to implement, 
and associated with a precise and well-defined operational 
context: optimization for GA and pattern-recognition for 
neural nets. As a matter of fact, a lot of researchers 
discovered the whole problematic of optimization or 
pattern recognition by applying GA or neural nets. 
Immune algorithms were never sold in such a persuasive 
way. No precise and complete algorithm was proposed 
and no clear operational context was associated with 
them: pattern recognition, defensive system, optimization, 
or robotics? Now, when maturing, researchers slowly 
realize that just playing with the initial basic GA or the 
initial neural nets does not give good results.  What they 
do instead is to preserve some good mechanisms 
originating from this biological inspiration: 
population/selection based search or crossover for GA, 
multiplayer for neural nets, but turn them into a more 
operational form.   
This is really what we are all doing today, based on our 
respective understanding of how the immune system 
behaves: gleaning here and there some inspirations and 
turning them into a more operational form. However, we 
should keep open our mind to more marginal voices, since 
if they are telling the truth, the radical revision they will 
entail in their community could have repercussions up to 
our own. 
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Complex adaptive systems is a terminology used 
to describe natural systems, such as biological 
and social systems, together with their many 
properties, interactions and resultant emergent 
behaviours. This paper discusses one general 
framework to study complex adaptive systems 
aiming at providing a better understanding and 
originally demonstrating that artificial immune 
systems, together with the biological immune 
system, can be placed in the context of complex 
adaptive systems. This unique framework is use-
ful for it suggests the possibility of existence of a 
common language to support the study of the 
many CAS and artificial intelligence systems.  
Classifier systems (CS) have been used to model 
adaptive agents for CAS. By tracing a parallel 
between AIS and CS, this paper makes it possi-
ble to employ AIS as alternative models for CAS 
agents as well. Novel hybrid and more complex 
systems are only a few of the outcomes that this 
paper can bring to the research community. 

b c4dfe�gfhji�kfl�emc�h[d
For centuries humankind has been looking into nature 
with two main goals in mind. First, to pursue the creation 
of models and explanations of how nature works (e.g., 
which laws – if they do exist! – govern gravity, the 
weather, our brains, etc.). Second, humankind has also 
been looking for inspiration to the development of arte-
facts to make life easier and more comfortable (e.g., by 
developing aeroplanes, ships, etc.). With the advent of 
computers, the human developments inspired by nature 
supplanted the barrier of the construction of artefacts. It 
now permeates the more abstract level of computational 
tools capable of not only simulating the natural world, but 
also of providing computational solutions to complex 
problems.  

This new perspective of how to use nature as a source of 
inspiration for the development of computational tools is 
termed nBoqpBr:p8sMo:t4uDr:r vwoyxDz:{|oy}�~4�"t�p
�|{|�B�qoyx4s  or t4p��|{��D�:oyx�sm�2o:�y�
nBo:pDr:p8s�oqt4uDr>�@~��:u�{ �-p
}6z  (Paton, 1994). The other front of 
using the computer to simulate and better understand the 
natural world is named t4p��|{|�B�:uD�:o:p�x-uBr:r v��@pD�:oy�JuB�q~4�"nDoyp�r�p�s8v
(de Castro & Timmis, 2002).  

In order to provide a more general framework with which 
to study natural systems (e.g., the nervous system, the 

immune system, the Internet, the social systems, etc.), 
several research schools have been proposing general 
theories and a common terminology, such as t4p��|{�r:~��Bo:� v ,
~/�@~/}�sM~/x-t4~  and uB�Du6{��:o���~�zqv	z��:~/�"z , that embrace features of 
all natural systems. These theories are very important for 
they lead to a common language that allows the analysis, 
interpretation, modelling, and understanding of natural 
systems under a general and interdisciplinary framework.  

From an artificial intelligence perspective, this general 
framework is a primary pre-requisite for the development 
of models and computational tools that can be better un-
derstood without requiring a great knowledge of a specific 
domain. In addition, the generality of such a framework 
can lead to a straightforward development and implemen-
tation of systems that combine features of more than one 
strategy, such as hybrid and ensemble systems.  � p��|{|r:~��'uB�Du6{��:o���~+z:v!z��:~8�"z  (CAS) is the terminology 
adopted here to encompass all these natural systems with 
their features of diversity, adaptability, and complexity, 
together with the emergent behaviours that arise from the 
interactions of their many component parts (Holland, 
1995). This paper explores one CAS theory, placing the 
immune system and artificial immune systems in the 
broader context of complex adaptive systems.  

One of the pioneer computational intelligence algorithms 
developed to model agents for CAS is the learning classi-
fier system introduced by Holland (1992). We propose the 
view that artificial immune systems, as introduced by de 
Castro and Timmis (2002), also serve as models for 
agents in complex adaptive systems. Indeed, there have 
been a number of works in the literature comparing spe-
cific artificial immune systems (AIS) with learning classi-
fier systems (Farmer ~4��uDr:� , 1986; Kauffman, 1989; Varela 
~4��uDr:� , 1989; Bersini & Varela, 1990; Bersini, 1991; Hunt 
& Cooke, 1996 and Hofmeyr & Forrest, 2000). However, 
none of these works thoroughly shows that AIS can be 
well placed in the CAS framework proposed by Holland 
(1995). 

This paper introduces one of the most popular views of 
complex adaptive systems (Section 2), and discusses how 
classifier systems (CS) are used to model agents for CAS 
(Section 3). This work then provides a brief discussion of 
the vertebrate immune system, claiming why it can be 
characterised as a CAS (Section 4). The paper follows 
with an introduction to a framework to engineer AIS 
(Section 5), then it explores how this framework is related 
with classifier systems, providing a survey of the litera-
ture that brings together CS and AIS (Section 6).  



Not only does this work make the first attempt to place a 
general-purpose framework to engineer artificial immune 
systems into the world of complex adaptive systems, but 
it also opens new avenues of research in the three fields – 
AIS, CS, and CAS. By presenting this discussion, new 
developments could be made in the broadest perspective 
of artificial intelligence, by devising models of CAS, and 
creating and simulating complex adaptive systems using a 
framework to design artificial immune systems. 

� l�h[���"�w�m� Y i Y �@emc4���'�����2em�����
The work proposed by J. Holland (1995) starts with a 
discussion of how natural (biological and social) systems 
are formed and self-sustained. These systems are grouped 
together under the heading t4p��|{|r:~���uD�Du�{|�:oy�J~ z:v!z��q~/�"z  
(CAS), in which the (complex) behaviour of the whole is 
more than a simple sum of individual behaviours. One of 
the main questions raised is that of how a decentralised – 
with no central planning – system is self-organised. Note 
that there is a strong similarity between this concept of a 
CAS and the concept of ~/�@~8}¡sM~/x-�¢zqv	z��:~8�"z  (Holland, 
1998). Indeed, complex adaptive systems exhibit emer-
gent phenomena, but this is not the main focus of the 
discussion to be presented here. 

As an instance of a CAS, one can think of the immune 
system, with its sheer diversity of cells, molecules and 
organs, all working in concert to provide security against 
foreign attacks and to aid in sustaining life. Several other 
examples can be given, such as all bodily systems (e.g., 
the nervous system, and the endocrine system), insect 
societies (e.g., ant and termite colonies), trading in com-
merce (e.g., the stock market). A common aspect here is 
that there is no central control. Every element composing 
the system plays its individual role and sometimes adapts 
itself and interacts with other elements and even systems 
with the aim of generating and sustaining its integrity and 
the life of the organism. 

Despite the differences among the many complex adap-
tive systems, in every single case, the persistence of the 
system relies on three main aspects: 1) interactions of 
components, 2) diversity, and 3) adaptation. According to 
Holland (1995), the choice of the name complex adaptive 
systems is more than a terminology “[i]t signals our intui-
tion that general principles rule CAS behaviour, principles 
that point to ways of solving attendant problems.” (p. 4)  

The main objective of (Holland, 1995) is to uncover gen-
eral principles that will enable the synthesis of refined 
CAS behaviours from simple laws. The core idea is to 
develop a well-designed mathematical model for CAS; a 
formal theory. The steps taken toward this goal were to 
initially select z�~8��~8x£nDu
z�o:t/z  – four properties ( u8sBs!}�~�sMuB¤
�:o:p�x , x�p�x�rqoyx�~�u
}�o:� v , ¥�rqp
�|z , and �Bo���~/}6z�o:� v ) and three mecha-
nisms ( �:u8sBsMoyx�s , oyx��q~/}6x�uDr��@pB�D~4ryz , and nD�Bo:rq�Boyx�s£nDr:pDt/¦4z ) – 
common to all CAS, and then to devise a framework and 
implement a computer-based model to study CAS. The 
following is a summary of the intrinsic parts of the Hol-
land's z�~/��~8xwnDu
z�o:t/z .  

§B?©¨ ª¬«�A@«*O®­I=Cª�¯�P"ª
As described above, Holland's seven basics are divided 
into four properties: aggregation, nonlinearity, flows and 
diversity; and three mechanisms: tagging, internal models 
and building blocks.  

§B?©¨8?°¨ 025/N�±!H�5�3²;:HJF
³ sDs	}�~�sMuD�:o:p�x  in complex adaptive systems occurs in static 
and dynamic senses. The first sense states how to describe 
the inherent structure of CAS (a standard way of model-
ling a CAS), and the second is related to what CAS do 
aggregate, i.e. how complex large-scale behaviours 
~/�@~/}�sM~  from the aggregate interactions of less complex 
elements. More precisely, in the first sense, basically, 
there is an aggregation of categories that afterwards will 
turn into building blocks for the models. In the second 
sense, aggregation is a basic characteristic of all complex 
adaptive systems, where each category aggregates with 
another category forming a more complex category, thus 
yielding to more complex hierarchical aggregations. ´ p�x-¤¡r:oyx-~4u�}�o:�:o:~8z  are present in complex adaptive systems 
in several distinct levels and they define how non-linear 
dynamics almost always make the behaviour of the ag-
gregate more complicated. Therefore, the behaviour of a 
system containing non-linear components is harder to 
model and to predict.  µ r:p
�|z  concern how data (e.g., information, stimuli, elec-
tric impulses, resources etc.) propagate through a system 
and vary over time. It is also divided into two properties, 
the multiplier effect, which spreads an injected resource 
or information at a given node or agent throughout the 
network, and the recycling effect, as the name suggests, 
helps to maintain the equilibrium in several ways: by 
adapting the data to a new use or function; by passing it 
through a cycle again, as for further treatment; or just by 
starting a different cycle in, i.e. to reprocess. 

The last property, �Doy��~8}�z�o:� v , is viewed as a necessary fea-
ture to generate and maintain a CAS. In fact, perpetual 
novelty is a hallmark of CAS. It indicates that the diver-
sity is the product of progressive adaptations, as proposed 
by Charles Darwin (1859), when he observed that the 
principles of evolution that operated to generate the spe-
cies, like competition, variation and selection, arise from 
the diversity of species. 

§B?©¨8?y§ ¶£H494·M1�K!;©FR¸¹F
The first mechanism, denoted �:u/sDsMoyx4s , refers to tag-based 
interactions (labelled interactions, i.e. identified and/or 
classified) that provide a sound basis for filtering, spe-
cialisation, co-operation, competition, formation of ag-
gregates, manipulation of symmetries and for selective 
interactions.  

The oyx-�:~/}6x-uBr��@pD�B~�ryz  mechanism is the expression chosen 
to refer to mechanisms for anticipation (the act of consid-
ering something beforehand, i.e. foreknowledge) and 
prediction (the act of reasoning about future events or 



possibilities, especially on the basis of special knowledge, 
i.e. foresight). In fact, internal models distinguish CAS 
from other complex systems. They balance exploration 
with exploitation (Holland, 1995), providing the make of 
careful systematic searches of profitable and useful re-
sources. There are two kinds of internal models, �:uDt4o:�  - 
that simply prescribes a current action and p
�J~/}��  - that 
explores alternatives (looks ahead), allowing inferences.  

The last mechanism, named nB�Do:r:�Doyx�swnBrqpBt8¦4z or sM~/x-~/}�uD�:p
}6z
constitute basic elements or parts that compose internal 
models. In fact, relevant building blocks are combined to 
model new situations, therefore, to generate internal mod-
els or a completely novel CAS.  

º l¢� Y �I�|c�»"c4�wg¼� ����em�w���£ewh¼�½h[i��w�
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The framework proposed by Holland (1995) for develop-
ing adaptive agents for CAS was introduced as consisting 
of three major built-in stages:  

1) In the {�~8} ¥�p�}6�@u
x-t4~$zqv	z��:~/�  stage, agents are viewed 
and described as a collection of message processing 
rules. The syntax of the rules depends on their inter-
action with the environment. A set of detectors and a 
set of effectors manage this system-environment in-
teraction. Additionally, the {|~/} ¥�p
}6�@u�x�t�~Àzqv	z��:~8�  
specifies the agents’ capabilities at a fixed point in 
time and it prepares these agents to novel situations 
without having all rules a priori.   

2) In the t/}�~4�Do:�:¤�u
z6z�o s	xD�@~/x-� stage the core idea is to 
provide the agents with the capability of adapting to 
the environment. In the performance system, a num-
ber of rules can be fired simultaneously according to 
the interactions of the system. As a consequence, 
these rules must compete with one another in order to 
have a single rule being selected to determine the 
output of the system. Each rule has a z��y}�~/x�sM�y�  as-
signed, which is modified via t/}�~4�Do:�:¤�u
z6z�o s	xD�@~/x-� on 
the basis of experience (e.g., a Bucket Brigade algo-
rithm (Booker ~���uDr:� , 1989)). Credit-assignment is 
performed in response (reward- reinforcement or 
punishment) to a ‘payoff’ received from the envi-
ronment. 

3) The }��Dr:~�¤¡�Doyz�t�p
�J~/}qv stage describes another way of 
endowing agents with adaptability by allowing the 
system to automatically generate ‘plausible’ rules. It 
should be done always taking the past experience into 
consideration. The author uses the notion of schemas 
(likened to building blocks) and genetic algorithms as 
tools for rule discovery. 

The framework described above for modelling CAS' 
agents is reminiscent of classifier systems. Indeed, classi-
fier systems have already been used to model CAS (Hol-
land, 1992). 

ÁB?©¨ P�GÂ=Cª!ª�¯6S ¯�«*ÃÄª¬ÅCª!Æ�«I¶®ª
J. Holland proposed the principles of classifier systems in 
1976 (Holland, 1992). They constitute an evolutionary 
computation strategy for creating and updating rules 
(named t�r:u�z�z�o ¥�o:~8}�z ), that are able to point out suitable 
actions for adaptive agents in changing environments. In 
some cases, classifiers are kept under permanent evolu-
tion to improve their performance. There are some basic 
concepts related to classifier systems:  

1) Classifiers are composed of an antecedent part ( t4p�x�¤
�Bo:�qo:p
x ) and a consequent part ( uDt4�qo:p
x ). The antece-
dent part of a classifier is a string of fixed size com-
posed of elements of the ternary set {0,1, #} - the 
symbol “#” is called “don’t care”, which can assume 
any value over a pre-defined finite alphabet (e.g., a 
wild card in a playing game of cards).  

2) A classifier system communicates with the environ-
ment through his message �D~4�q~4t4�qp
}6z  and ~�¥:¥�~�t4�:p�}�z . 
Detectors receive and decode messages from the en-
vironment. Effectors propose actions on the environ-
ment (Figure 1). 

3) A z��y}�~/x�s����  is associated with each classifier, and 
expresses the energy or power of the classifier during 
the evolutionary process. 

4) 
µ ~4~4�DnDuBt8¦  from the environment defines an appropri-
ate reward to the active classifier, proportional to the 
quality of the action(s) it proposes. 

5) The zq{�~�t4o ¥Jo:t4o:� v  of a classifier is inversely proportional 
to the quantity of don't care symbols (#) in its antece-
dent part. Classifiers with low specificities can match 
larger numbers of messages from the environment, 
and vice-versa. 

Classifier Systems are divided into three interactive and 
distinct sub-systems: the Ç��Br:~�u�x-�wÈ¿~/z6z�u8sM~$É��DnB¤©É�v!z��q~/� , 
the 

³ {D{�p�}��qo:p
xD�@~/x-�wp°¥ � }�~4�Do:�ÊÉ-�BnD¤°É�v	z��:~/�  and the Ç��Dr:~Ë oyz�t�p
�J~/}qv$É��DnD¤°É�v	z��:~/� (Figure 1).  
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Figure 1: Simplified flow (Classifier Systems ↔ Envi-
ronment). D: detectors; E: effectors. 



The Ç��Dr:~"u�x��ÂÈ¿~/z6z�u8s�~�É-�DnB¤©É�v!z��:~8�  decodes messages in a 
way that the classifier system can recognise them. Then, 
all classifiers try to match their antecedent part with the 
message (comparison phase). This matching can be made 
by bit-to-bit comparison, according to specific rules, or 
just by calculating a variation of the Hamming distance. 
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Figure 2: Basic algorithm of a Classifier System.

 

Each classifier that matches the environmental message is 
sent to the 

³ {B{|p
}��:o:p�xD�@~/x-�Êp©¥ � }�~4�Do:�"É��DnB¤©É�v!z��q~/�  where 
they participate in a t�p
�|{|~4�qo:�:o:p�x . This competition is a 
random process biased by the strength of classifiers that 
matched their antecedent part with the message - classifi-
ers with higher strengths have higher probabilities of 
winning the competition. The winner will act on the envi-
ronment. The environment will reply in response to the 
action proposed by the winner classifier. The 

³ {D{�p�}��:o:p�x�¤
�@~/x-�	p©¥ � }�~��Bo:��É-�BnD¤°É�v	z��:~8�  incorporates a value generated 
by this feedback from the environment to the strength of 
the active classifier at that moment. Once the feedback is 
received from the environment and the credit is attributed 
to the winner classifier, a new message will be provided 
by the environment, describing its new state. 

The process goes on iteratively, epoch by epoch. At the 
end of each epoch, the classifier system will take part in 
another process of evolution at the Ç��Br:~ Ë oyz�t4p���~/}qvjÉ-�DnB¤
É�v!z��:~8� , where genetic operators are applied to produce a 
new generation of classifiers. Basically, a genetic algo-
rithm chooses classifiers with large strengths and pro-
motes reproduction among them by applying the genetic 
operators of crossover and mutation. Offspring replace 
weak individuals (the ones with lower strength). 

Several taxes are collected from all individuals in the 
population of classifiers. A rqo ¥�~w�:u��  is charged from each 
classifier at each iteration. A nBoq�£�:u4�  is collected from 
each participant of the competition. The winner in the 
competition also pays a tax for the right to act on the 
environment. A simplified algorithm is depicted in Figure 
2. It provides the starting point from which one can have a 
better insight of the internal processes of classifier sys-
tems. 

Based on previous studies, we can state that classifier 
systems constitute a sufficiently flexible tool for self-
adaptation to time-varying contexts. Additionally, they 
have shown effectiveness on the production of secondary 
responses to previously presented stimuli and are able to 
react promptly to changes in the environment due to their 
diversity preservation feature (Vargas ~4�!uDr:� , 2002). 

Note that the basic concepts of a classifier system are 
reminiscent of the framework, discussed previously, for 
adaptive agents to model CAS. For instance, the set of 
detectors/effectors plus the IF/THEN rules (classifiers) 
correspond to the performance system. The rule discovery 
and credit apportionment systems are equivalent to the 
rule discovery and credit assignment algorithms, respec-
tively, as summarised in Table 1. 

Table 1: Mapping a classifier system into the Holland’ s 
framework for adaptive agents to model CAS. 
P�é©1BF6F²;yê²;:HJ5"ª�ë�F¡3²H�¸�F =CL!1
±�3²;�ìDH�=CE
H�K¬3RF�ê²ND5"PI=Cª
Set of detectors/effectors 
plus the classifiers 

Performance system 

Rule discovery system Rule discovery system  

Credit apportionment sys-
tem 

Credit assignment system 
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It is possible to identify the seven basics of all CAS in the 
mammalian immune system. 

ñB?©¨ 0|Ã@òC0|«*Ã@Æ�¯6«�ª
1) 

³ sBs!}�~6s�uD�:o:p�x  – In the immune system, aggregation can 
also be divided into z��:uD�:o:t  and �6v	x-u
�@o:t . The static ag-
gregation corresponds to the intrinsic structure of the 



immune system, which is composed of a large variety 
of cells. Among them, lymphocytes are the most im-
portant ones, from a biological and computational per-
spective. These cells can be naturally categorised ac-
cording to their physiology and function, mainly into 
B- and T-cells. They all act together to protect our 
bodies against foreign attacks by pathogens, and 
against malfunctioning self-cells. The physiology and 
functions that lead to an aggregation of immune cells 
can be easily exemplified. For instance, those naïve 
lymphocytes that mature within the bone marrow are 
termed B-cells, and those that mature into the thymus 
are named T-cells. Macrophages are different from B- 
and T-cells for they act by scavenging infected cells 
and other debris found in the blood stream and lymph. 
Interactions among cells and molecules in the immune 
system are not only abundant, but also necessary for 
its functioning. Without the help of T-cells, B-cells 
cannot detect pathogens hidden inside and causing 
damage to our own cells. Also, chemical products re-
leased by B- and T-cells stimulate and signal to other 
cells, such as macrophages and even other B- and T-
cells, to ‘detect’  pathogens and perform their roles 
against them. Therefore, the �6v	x-u
�@o:t�u/sDs!}�~6s�uD�:o:p�x  (in-
teraction) in the immune system leads to more power-
ful immune responses to pathogens. Aggregation is 
thus pervasive in the immune system.  

2) 
´ p
x-¤¡rqoyx�~�u
}�o:�:oq~/z  - In the case of the immune system, 
there are, among others, the effects of saturation in an-
tibody production and lymphokine secretion. Regard-
less of the amount of pathogens invading the organ-
ism, antibody production and lymphokine secretion 
cannot raise above a certain level. Nonlinearity is also 
evident when one considers that, for example, two an-
tibodies acting together have a different effect in an 
antigen than if we sum the effect of both of them act-
ing individually. This holds true for all elements in the 
immune system, from lymphokines to macrophages. 

3) 
µ r:p���z  - Alike nonlinearity, several levels of flow can 
be identified in the immune system. From the flow of 
immune cells throughout the organism, to the flow of 
their secreted chemicals (e.g., lymphokines). The mul-
tiplier effect can be observed during B- and T-cell 
clonal expansion (proliferation) in response to anti-
genic stimuli. When an antigen is detected, some lym-
phocytes are selected due to an antigenic recognition 
and start proliferating, thus releasing (spreading) anti-
bodies and lymphokines in the lymph and blood 
stream. An instance of the recycling effect is the affin-
ity maturation process, which allows immune recep-
tors to become more adapted to the antigenic stimuli. 
Another example is the release of lymphokines, 
mainly by T-cells, signalling the death of an antigen 
and thus ending the immune response allowing the 
immune system to return to its equilibrium (non-
responsive) state. 

4) 
Ë oy�J~/}6z�o:� v  - In the immune system, B-cells, T-cells, 
macrophages, granulocites, chemokines (lymphoki-
nes), etc., all contribute to a suitable immune function-

ing. Diversity in the immune system can also be stud-
ied in different levels. For instance, at an aggregation 
level, there are different types of cells (e.g., B-cells, T-
cells and macrophages), molecules (e.g., antibodies, 
and lymphokines), and organs (e.g., bone marrow, 
thymus, and lymph nodes) composing the immune 
system. In addition, many of these groups have an in-
trinsic diverse set of components. For example, it is 
known that there is a large variety of lymphocyte re-
ceptors that endow the immune system with the capa-
bility of recognizing an even more diverse set of anti-
genic patterns.  

ñB?�§ ¶£«�P�óm=@O"¯�ª�¶®ª
1) ô�u/sDsMoyx4s  - Each immune cell has its particular design; 

not a single element is the perfect copy of another one. 
Nevertheless, all elements of a given type (e.g., B-
cells) share some common features (tags) that allow 
them to be categorised as B-cells. The same is true for 
other cell types and molecules. 

2) õ�x-�:~8}�x-uBr!�@pB�D~4r�z  - When the immune system is primed 
with a type of pathogen, it builds a repertoire of cells 
and molecules that is specialised in recognising this 
type of pathogen. The immune system thus builds an 
internal model that allows it to anticipate a known an-
tigenic patern, thus promoting a faster recognition and 
elimination of previously seen pathogens. The idea of 
internal models in the immune system is largely stud-
ied in theories of immune networks. In the original 
immune network theory, introduced by Jerne (1974), 
individual cells and molecules are capable of recognis-
ing each other and antigens as well. As an outcome, 
the immune system naturally generates and maintains 
a network of immune cells and molecules that interact 
with each other even in the absence of external stim-
uli. The same immune cell that can recognise another 
immune cell can also recognise an antigen. The im-
mune cell recognised has similar attributes to the anti-
gen and is thus called an oyx��q~/}6x�uDrBo��@u/sM~  of the antigen. 
The immune cells and molecules that are currently 
available (available repertoire) in the immune system 
can be likened to the tacit internal models, whilst 
those cells that are constantly being created and re-
placing the existing low stimulated ones can be lik-
ened to the overt internal models. 

3) ö*�Bo:rq�Boyx�s�nBr:pDt/¦�z - A clear example of the presence of 
building blocks in the immune system is the use of 
genes, selected from gene libraries, to construct lym-
phocyte receptor molecules. Individual genes and the 
libraries themselves can be considered as building 
blocks to generate receptor molecules. 
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As with any new field of research, the various works on 
artificial immune systems lack a more fundamental set of 
ideas, mechanisms, and common language for their de-



scription, understanding and development. To alleviate 
these disparities, a first textbook in English is now being 
released (de Castro & Timmis, 2002). This section briefly 
reviews and discusses the framework proposed in this 
book. 

One of the contributions of this textbook is the proposal 
of a generic framework with which to design and under-
stand artificial immune systems. Artificial immune 
systems have been defined as adaptive systems inspired 
by theoretical immunology and observed immune 
functions, principles and models, which are applied to 
problem solving (de Castro & Timmis, 2002). To design 
an AIS, the authors proposed a layered framework with 
three main parts:  

1) a }�~¡{ }�~8z�~8x��quB�:oqp
x  for the components of the system,  

2) a set of �@~4t8��u�x�o�z��"zw�qp�~/�JuBr:�DuD�:~��y�-~�oyx��q~/}�uBt��:o:p�xBz of 
individuals with the environment and each other, and 

3) some uD�Bu6{��quB�:oqp
x*{ }�pBt�~4�D�
}�~/z .  
Within each of these layers there are various strategies. 
For instance, in layer 1 – representation – shape-spaces 
(Perelson & Oster, 1979) play a major role. A shape-
space may be understood as a (search) space where 
attribute strings are used as abstract models to represent 
immune cells and molecules. The idea is to use the 
attribute strings as means of quantifying the degree of 
recognition (affinity) between immune cells, and between 
them and the environment.  

In layer 2 – interactions – the environment may be 
simulated by a set of input stimuli, and fitness and/or 
affinity functions. These allow the determination of the 
(relative) quality of the individuals composing the 
population. For example, if using binary strings in layer 1 
to represent the immune receptors, a metric such as the 
Hamming distance is a candidate to be used to quantify 
the degree of similarity or dissimilarity (recognition) 
between two bitstrings.  

The procedures of adaptation in layer 3, that govern how 
the behaviour of the system varies over time, are usually 
simplified models of an immune function, process, or 
theory. For instance, clonal selection (Burnet, 1959), 
negative selection (Kruisbeck, 1995), immune networks 
(Jerne, 1974), and so forth, have been largely used by the 
AIS community. These procedures usually take the 
affinity/fitness measures of layer 2 as some of their 
inputs. 
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Note that this framework is not much different from the 
one proposed by Michalewicz and Fogel (2000) when 
describing heursitic problem solving techniques. They 
suggest that three main concepts are involved in problem 
solving: }�~¡{ }�~8z�~8x��:uD�:o:p�x , the definition of an pDn��J~4t4�qoy��~
¥��
x-t4�qo:p
x , and the choice of an ~8��uDr:�DuB�:oqp
xÄ¥��
x-t4�qo:p
x . 
Additionally, the proposed framework for AIS also brings 
some similarities with the framework introduced by 

Holland (1992) to model adaptation in natural and 
artificial systems. Holland suggests that such a framework 
might be composed of an ~/xD��o�}�p�xB�@~8x�� undergoing 
adaptation, an uD�Bu6{|�:oy��~ {|r:u�x which determines successive 
structural modifications in response to the environment, 
and a {|~/} ¥�p
}6�@u�x�t�~��@~�u
z���}�~  of different structures in the 
environment. 

There are also many similarities between the proposed 
AIS framework and some basic design principles of other 
biologically inspired techniques, such as neural networks 
and evolutionary algorithms. Artificial neural networks 
require a model for an artificial neuron and a network 
structure (representation), one or more activation function 
(interactions), and a learning algorithm (adaptation 
procedure). Evolutionary algorithms also require some 
sort of data structure (representation), fitness function 
(interactions), and variation (genetic) operators to be used 
in the adaptation procedures. 

Therefore, though there might be slight differences among 
the many frameworks for problem solving and modelling 
of complex adaptive sytems, it is possible to stress a set of 
basic components (building blocks) from which some of 
them may be useful in a particular context. As examples, 
one may stress an environment in which the systems are 
built, a given representation scheme for individuals that 
inhabit the environment, some evaluation mechanisms to 
allow for a qualitative distinction of individuals, and 
adaptation strategies to change the configuration (state) of 
the system. 
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There have been a number of works in the literature com-
paring specific artificial immune systems with classifier 
systems. Among others, one can highlight the works of 
Farmer ~4�$uDr:� (1986), Kauffman (1989), Varela ~4�wuDr:�
(1989), Bersini & Varela (1990), Bersini (1991), Hunt & 
Cooke (1996) and Hofmeyr & Forrest (2000) (see Table 
1). This section aims at surveying the works from the 
literature that liken specific AIS with classifier systems 
(CS), and placing the framework for engineering AIS, 
introduced in Section 5, in the context of classifier sys-
tems.  
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To date, all the works comparing AIS with CS were made 
under specific application scenarios. To the authors’  
knowledge, the first work to look for similarities and 
differences between both systems was presented by 
Farmer ~��"uBr:�  (1986). Basically, the authors wrote both 
systems in the form of a dynamical system, resulting in 
equations of motion to describe their dynamics. A CS was 
used to model the immune system (IS) by drawing an 
analogy between individual classifiers and antibodies. 
They pointed out that the main difference between both 



systems was the nature of the nonlinearity in both equa-
tions. They also stressed other differences, like the inter-
action with the external environment and the system of 
message passing used in the classifier system. Addition-
ally, the authors even stated that “ It is an accident that 
there is any similarity at all between both systems” . De-
spite that, some similarities were presented. They found 
out that the generation of new solutions acts in precisely 
the same manner in both systems (providing creativity), 
and that both frameworks are strongly non-linear dynami-
cal systems. Unfortunately their work had relatively little 
impact on CS research, but is considered a landmark of 
the field of AIS (de Castro & Timmis, 2002). 

 

Table 2: A synthesis of the comparisons performed by [1] 
Farmer ~4�!uDr:� (1986) and [2] Hofmeyr & Forrest (2000).  P�é©1DF6FR;yêQ;:H�5

ª�ë-FQ3QH4¸
ý#ND5�
 =C5_3²;�ê²;:9�;©1
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Classifier [1] Antibody  

Specificity [1] Specificity 

Condition [1] Epitope 

Tax [1] Dissipation term 

Payoff [1] Antigen reduction 

Economy [1] Concentration update rule 

Performance 
function 

[1] rate of antigen removal 

External mes-
sage 

[1] 
[2] 

Antigen 
Detector 

Message list [1] 
[2] 

Paratopes and antigens 
Network traffic  

Action [1] 
[2] 

Paratope 
Isotypes 

Strength [1] 
[2] 

Concentration 
Immature, mature, activated 
and memory states 

Genetic opera-
tors 

[1] 
[2] 

Genetic operators 
Random detectors 

Matching [2] via the r-contiguous bits rule 

Competition [2] Bidding for messages 

More specific 
match wins 

[2] more specific match wins 

Support [2] Activation threshold 

Message inten-
sity 

[2] Sensitivity level  

Bucket brigade [2] Affinity maturation 

Triggering [2] Negative selection 
 

For Bersini and Varela (1990) the Immune System is 
more like Holland's classifier system (either escape 'brit-
tleness' (fragility) or 'semantic closure'). The 'problem 
solving' qualities belong to an evolving, adaptive and self- 
organising population of interactive operators. The au-
thors suggest that a complete comparison between CS and 
an immune network model covers the whole cognitive 
domain: search, adaptability, memory and learning. 

In Hunt and Cooke's (1996) point of view, their immune 
network model combines the advantages of learning clas-
sifier systems with some of the advantages of neural net-
works, machine induction and case-based retrieval. The 
authors believe that although their AIS has similarities 
with both systems, it differs from both of these in a num-
ber of significant aspects. These differences have the 
potential to make their AIS applicable in situations where 
neural networks or learning classifier systems are unsuit-
able, e.g. learning classifier systems find it difficult to 
deal with problems which lack separation between global 
solutions or have many locally optimal rules. This is not 
the case for their AIS. 

Hofmeyr and Forrest (2000) referred to an AIS for net-
work intrusion detection as a resemblance to the architec-
ture of a classifier system. The mapping between their 
AIS and CS was not 1 to 1. In their implementation noth-
ing corresponded to the action part of a classifier. Fur-
thermore, the authors were the first ones to suggest that 
their AIS could be added to the repertoire of CAS. 

Table 2 summarises the comparisons made by Farmer ~4�
uBr:�  (1986) [1] and Hofmeyr and Forrest (2000) [2] with 
classifier systems. Note that, in some cases, an equiva-
lence between both works can also be drawn. 
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The comparison of specific AIS with classifier systems 
can be extended to a more general comparison of AIS in 
the light of the framework described in Section 5 as fol-
lows (see Table 3). 

Classifiers may correspond to attribute strings, in a given 
shape-space, representing immune cells and molecules. 
These strings can be simple structures such as binary 
strings or more complex structures such as one containing 
symbolic values. The communication with the environ-
ment is performed via a set of input stimuli, or one or 
more fitness/affinity measures. A detector in a classifier 
system corresponds to a receptor in an immune cell, and 
the effector might be likened to lymphokines excreted by 
the immune cells. Other types of effectors can also be 
available in an AIS depending on their rationale (e.g., the 
elimination or classification of given pattern). The 
strength of a classifier might correspond to the affinity 
value of a given immune cell or molecule, which in turn 
will be responsible for determining an action of or to be 
acted upon this cell or molecule. Though most AIS do not 
employ wild cards (don’ t cares) in their representation, it 
can also be found in the literature (e.g., Hart ~4��uDr:� , 1999).  



Table 3: General comparison between AIS and CS. 
P�é©1DF�F²;yêQ;:H�5"ª�ë-FQ3QH4¸�F =C5_3²;�ê²;:9�;©1
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Classifiers Attribute strings 

Strength of a classifier Fitness/affinity 

Detector Receptor 

Effector Lymphokines excreted 

Don’t cares (#’s) Don’ t cares 
 

In the highest level it is also possible to link AIS with 
classifier systems. The rule and message sub-system can 
be likened to the set of attribute strings representing im-
mune cells and molecules. The apportionment of credit 
sub-system can be equated to the set of mechanisms to 
evaluate the interactions of individuals with the environ-
ment. Finally, The rule discovery sub-system corresponds 
to the procedures of adaptation for AIS. Table 4 summa-
rises the framework comparison between AIS and classi-
fier systems.  

Table 4: Framework comparison between AIS and CS. 
P�é<1BF6FR;�ê²;:HJ5"ª¬ë-F¡3²H4¸¹F =C5�3²;yêQ;:94;<1
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Rule and message sub-
system 

Representation (shape-
spaces) 

Apportionment of credit 
sub-system 

Mechanisms to evaluate 
interactions 

Rule discovery sub-system Procedures of adaptation 
 

In addition to the general comparison made above, there 
are some equivalencies between both systems that should 
be emphasised:  

• both systems employ tags in their inside and outside 
interactions;  

• it is possible to observe an intrinsic willingness to 
combat or to compete;  

• the matching processes are isomorphic in function;  

• both systems are frequently updating their internal 
models.  

As an additional contribution, we will follow Holland's 
suggested common representation, described in Section 4, 
in order to create a simplified model for the AIS. 

There are three stages that we must follow to start the 
modelling (see Section 4 for details). The first one is the 
{�~8} ¥�p�}6�@u
x-t4~wz:v!z��:~8� . In this stage agents are viewed and 
described as a collection of message processing rules. The 
exposition is going to start by identifying the agents in an 
immune system. Recalling that agents are active elements 
that form CAS, it is possible to say that the immune sys-
tem has several agents. Among them, choose the antibod-
ies as the representative agents of the immune system. 

Each agent can be modelled as a classifier, i.e. a message-
processing rule. The rule syntax will vary according to the 
interaction with the environment. The agents will have 
detectors, to detect environmental stimuli, e.g. tags on 
antigen surfaces, and effectors to indicate the next step or 
what task should be accomplished.  

In stage 2, it is necessary to define the credit assignment. 
This can be done by taking into consideration the affinity 
measure between the antibody and the antigen, i.e. the 
classifier and the stimuli. 

Finally, the last stage is Rule discovery and it can be dealt 
with a modified genetic algorithm, taking the past experi-
ence of memory cells (classifiers with high strength) into 
consideration.  

� »"c4d Y �ûg��w� Y g�ú �
This paper reviewed complex adaptive systems as all 
natural systems exhibiting a number of diverse interactive 
individuals and presenting adaptability. It was the first 
attempt to place artificial immune systems into the con-
text of complex adaptive systems proposed by J. Holland 
(1995).  

A framework to engineer artificial immune systems and 
the main concepts involved in the design of classifier 
systems were also presented. These allowed a survey and 
general comparison between CS and AIS. As both sys-
tems were demonstrated to be equivalent and classifier 
systems have been used to model agents for CAS, AIS are 
also suitable to model agents for complex adaptive sys-
tems.  

The framework to study CAS is generic in the sense that 
it provides a common language for the modelling, under-
standing, simulation, and creation of computer models for 
CAS. This common language, together with the suitability 
of AIS to study CAS, lead to a broader applicability of 
AIS and to its possible combination with several tech-
niques inspired by other systems or processes. This work 
therefore opened new avenues of research that may result 
in new developments of artificial intelligence approaches, 
through the proposal of models of CAS and the creation 
and simulation of complex adaptive systems by using a 
framework to design artificial immune systems. 

Indeed, de Castro and Timmis (2002) have surveyed a 
number of works in the literature describing and propos-
ing hybrids of AIS with neural networks, evolutionary 
algorithms, fuzzy systems, and so forth.
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�����	����� ��� �	��� 	� ��� ���
	�� ����� �	�����
��� ������ ������� 
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Information Immune Systems
Dennis L. Chao and Stephanie ForrestDepartment of Computer S
ien
eUniversity of New Mexi
oAlbuquerque, NM 87131 USAfdl
hao,forrestg�
s.unm.eduAbstra
tMany people are exposed to more informa-tion than they 
an pro
ess e�e
tively. Wedes
ribe an approa
h to building an informa-tion immune system that eliminates undesir-able information before it rea
hes the user.This approa
h is inspired by natural immunesystems that prote
t us from pathogens. Thepotential appli
ations of an information im-mune system in
lude �ltering out undesirabledata, generating a variety of solutions to a de-sign problem, and �nding 
onsensus solutionsto problems.1 Introdu
tionInformation overload is inevitable in a world that pro-du
es over an exabyte (one billion gigabytes) of infor-mation per year [28℄. We will 
ontinue to produ
e and
onsume more and more information, so we must �ndinnovative ways to manage it. Although �nding andmanaging information are a
tive resear
h areas, mu
hof the e�ort is dire
ted towards a
tive strategies su
h asinformation retrieval. Although these te
hniques helpindividuals lo
ate desirable information, they also a
-
elerate the information glut.In this paper, we outline the features of an informa-tion immune system (IIS)1 that 
ould help people dealwith the glut of data. We draw inspiration from natu-ral immune systems that prote
t us from a seeminglylimitless number of possible invaders su
h as ba
teria,viruses, and parasites. We believe that an IIS 
an be
onstru
ted to eliminate undesired information afterdete
ting it in a manner analogous to the natural im-mune system's. Su
h an IIS would be situated betweenan individual and a stream of information as a media-tor. Instead of a
tively bringing more pie
es of infor-mation to our attention, it will quietly 
ensor unwanteddata.1The term \information immune system" was intro-du
ed by Neil Postman (in [39℄ and [40, page 63℄).

An IIS should be 
apable of learning what kinds of in-formation a user wants and dis
arding the rest. Thetask of distinguishing what is desirable is a diÆ
ultone. We propose taking one of the approa
hes used byour natural immune systems, whi
h 
an \remember"a pathogen that infe
ts us so it 
an eliminate it morequi
kly in future en
ounters. An IIS 
an do this bystoring examples of reje
ted information and 
ensoringsimilar data. If the memory of the system is too spe-
i�
, this approa
h is likely to be ine�e
tive. Pathogensand information 
an mutate over time, and our im-mune systems must be able to generalize. Therefore,both the natural and the information immune systemsmust also learn to eliminate related pathogens whiletaking 
are not to harm anything else.An extension to a personal IIS is a group IIS. If oneuses the IISs of many individuals in serial to �lter astream of information, the only information that 
ansurvive all IISs is the information that everyone �ndsdesirable. We 
all su
h information \
onsensus solu-tions." Consensus solutions are useful in shared envi-ronments, su
h as broad
ast musi
 or artisti
 displaysin publi
 spa
es. We will outline the relationship be-tween a proposed IIS and a natural immune system,propose some appli
ations of an IIS, in
luding infor-mation �ltering, intera
tive design, and 
ollaborativedesign, then summarize the results of an experimenttesting an IIS implementation.2 Related workSeveral areas of resear
h have in
uen
ed our 
on
ep-tion of an IIS. An IIS must be able to learn frompast en
ounters, and the issues of learning and mem-ory have long been addressed by the �elds of arti�
ialintelligen
e and ma
hine learning. The primary taskthat we propose for an IIS, information �ltering, hasbeen explored by the �eld of human-
omputer inter-a
tion. Collaborative �ltering may be relevant for IISsthat 
lassify data that are diÆ
ult to evaluate algorith-mi
ally. A few 
ollaborative �ltering systems make re
-ommendations to groups instead of individuals. Thesegroup re
ommender systems perform a fun
tion similarto a group IIS. Finally, an IIS should be informed by



earlier work in arti�
ial immune systems. All of thesein
uen
es are brie
y dis
ussed below.Case-based reasoning is a te
hnique that adapts solu-tions to past problems to solve similar 
urrent prob-lems [44℄. Memory-based reasoning [49℄ and instan
e-based learning [1℄ are related s
hemes that use the solu-tion of the most similar previous problem. Systems us-ing these approa
hes learn by \remembering" spe
i�
past events rather than 
reating rules or generaliza-tions. Immune memory uses a form of instan
e-basedlearning; the parti
ular response that was e�e
tive in
learing a pathogen will likely be used in future en-
ounters with related pathogens [29, 43, 5℄.Asso
iative memories, often 
alled 
ontent-addressablememories, are neurally inspired ar
hite
tures that 
anretrieve items using approximate addresses. Smith out-lines the parallels between Kanerva's sparse distributedmemory [25℄ and the memory of the natural immunesystem [47℄. The memory of the natural immune sys-tem is not exa
t, and exposure to a novel pathogen 
aneli
it the response primed by a related pathogen.The term \information �ltering" refers to a large rangeof te
hniques used to remove data from an in
omingstream on the basis of user- or group- spe
i�ed pref-eren
es [2℄. Early approa
hes used simple rules [30℄or signatures (e.g. keywords) to identify undesirabledata to blo
k. These approa
hes are still popular, andmany 
ommer
ial produ
ts, su
h as Cyberpatrol [9℄ forweb 
ontent and the Realtime Bla
khole List [41℄ andBrightmail [6℄ for e-mail, 
ome with long lists of rulesand signatures, whi
h 
an be e�e
tive in blo
king un-desirable data but are vulnerable to mali
ious sour
esthat 
an 
raft information to bypass them. To thwartthese adaptive adversaries and to personalize the �lter-ing, the user is often allowed to spe
ify additional rulesfor a

epting and reje
ting data. Unfortunately, thespe
i�
ation of su
h rules is often diÆ
ult and error-prone, and therefore not used routinely. An IIS shouldin
orporate reliable signatures of undesirable data asa �rst line of defense to be supplemented with moreadaptive te
hniques to provide better and more per-sonalized 
overage.Several resear
h systems simplify the �lter spe
i�
a-tion problem by pla
ing the burden of generating ruleson software rather than on a user or programmer. In-fos
ope [14℄ monitors a user's behavior to 
reate rulesfor Usenet newsgroup �ltering. The system suggeststhese rules to the user, who 
an a

ept, modify, or re-je
t them. Maxims [34℄, an interfa
e agent for e-mail,also generates �ltering rules based on user behavior,but it suggests a
tions for the user to take rather thanrules when it is 
on�dent in its predi
tions. Rule-basedlearning s
hemes often require many examples beforethey 
an infer new rules. In 
ontrast, an IIS using aninstan
e-based learning approa
h 
ould learn to blo
ka 
lass of data upon seeing only a single exemplar.Collaborative �ltering uses the preferen
es of others

to help an individual make 
hoi
es [31, 16, 42℄. Forexample, a 
ollaborative �ltering system would re
om-mend an item for a person to pur
hase by 
hoosing anitem pur
hased by someone with a similar pur
hase his-tory. By harnessing the 
olle
tive preferen
es of manyindividuals, su
h systems 
an infer similarity betweenitems without needing to understand the relationshipbetween them. This approa
h is useful when it is dif-�
ult for a program to determine similarities betweenitems, su
h as art or musi
. An IIS 
ould in
orpo-rate 
ollaborative �ltering te
hniques to determine thesimilarity between items for its asso
iative memory 
a-pabilities.There are a few systems that re
ommend items togroups instead of individuals. Musi
FX [32℄ sele
ts mu-si
 stations that are broad
ast to a gym full of people.The members of the gym must rate all the stations be-forehand, and Musi
FX plays one of the stations withthe highest average rating. One short
oming of Mu-si
FX is that it apparently does not s
ale to a largenumber of 
hoi
es. If the users were not able to eval-uate all of the stations, the quality of the system's
hoi
es would likely be degraded. GroupCast [33℄, de-veloped by the same resear
h group, used a 
on
ep-tually similar s
heme to display 
ontent on a publi
display system. Unfortunately, they found that thene
essary user pro�les would have been too large forany user with a reasonable amount of patien
e to 
om-plete. In addition, without extensive pro�les it wasdiÆ
ult to �nd appropriate interse
tions of user prefer-en
es to put on the GroupCast displays. Instead, theydisplayed 
ontent that was interesting to one of theusers, hoping that by 
han
e others would have similarinterests. PolyLens [36℄ re
ommends movies to smallgroups of people who wat
h movies together. This sys-tem applies a standard 
ollaborative �ltering algorithmto make re
ommendations for ea
h of the group mem-bers then 
ombines the results to make a group re
om-mendation. These systems give insight into the natureof �nding solutions for groups. Notably, it is diÆ
ultto make re
ommendations that satisfy all members ofa large group.Immune system inspired algorithms have often beenused for anomaly dete
tion. They draw on themetaphor of the adaptive immune system's ability todistinguish between self, or normal data, and nonself,or anomalous data. One of the �rst su
h systems wasthe negative sele
tion algorithm introdu
ed by Forrestet al [15℄. The algorithm generated random strings andthose that were similar to sequen
es of bytes in a given
omputer �le were eliminated. The surviving stringswere therefore not similar to any in the �le. If one ofthese strings ever mat
hed the 
ontents of the �le, thenthis indi
ated that the 
ontents had been 
hanged sin
ethe training period. These strings were used as nega-tive dete
tors to dete
t novel sequen
es of bytes, su
has those introdu
ed when a virus 
orrupts or infe
ts a�le. The ARTIS framework is an extension of this work



that applies negative sele
tion to dete
t anomalies instreams of data rather than in stati
 data sets [18, 19℄.This framework was used to 
reate systems to dete
tnetwork intrusions [18, 19, 27, 54℄.We believe that most useful sour
es of informationpresent 
ontinually 
hanging streams of data, so that itwould be undesirable for an IIS to reje
t all novel data.The IIS is inspired by the immune system's ability toremember past en
ounters with pathogens, while thearti�
ial immune system approa
h to anomaly dete
-tion is usually based on the immune system's ability todete
t novel foreign proteins. The anomaly dete
tionability of ARTIS 
ould 
omplement an IIS for 
ertainappli
ations, but for many appli
ations we imagine us-ing negative dete
tors without negative sele
tion.Many 
omputer s
ientists have developed arti�
ial im-mune systems based on idiotypi
 network theory [24℄.The idiotypi
 systems fo
us on the dynami
s of the in-tera
tions among similar antibodies and antigens. Al-though many do not attempt to reprodu
e the behav-iors seen in the natural immune system, they have use-ful properties that have been applied to sear
h [4℄, data
lassi�
ation [21℄, 
luster dete
tion [50℄, and data min-ing [12℄. The 
lassi�
ations produ
ed by idiotypi
 ar-ti�
ial immune systems 
ould potentially be used asmetadata to enhan
e the dis
rimination of an IIS.3 The immune system as aninformation �lterWe believe that an IIS 
an borrow several patternre
ognition me
hanisms from the natural immune sys-tem. Our natural immune system 
onsists of two 
om-ponents that use di�erent pathogen re
ognition strate-gies. The innate immune system uses a few reliablesignatures of foreignness to identify invaders, whi
hJaneway 
alls pathogen-asso
iated mole
ular patterns(PAMP) [22℄. An example of a PAMP is the mannose
arbohydrate mole
ules found on many ba
teria andother pathogens but not in mammals [48℄. These sig-natures have been stable over evolutionary time andare en
oded in the genome of our immune systems.This strategy is used by many of the signature andrule based information �ltering produ
ts mentioned inSe
tion 2. These produ
ts 
ould serve as a �rst line ofdefense, playing the role of the innate immune systemin an IIS. However, not all signatures of pathogenshave been (or even 
an be) anti
ipated, and evolutionwill favor pathogens that do not 
arry the signaturesre
ognized by our innate immune systems. One roleof the adaptive immune system, dis
ussed below andoutlined in Table 1, is to dis
over the signatures ofpathogens not 
overed by the innate immune system.In the following subse
tions we des
ribe some issuesthat an IIS must fa
e and how one 
an draw inspira-tion from the natural immune system to address them.

Natural IS Information ISshape spa
e parameter spa
eself desirable informationnon-self undesirable informationhelper T 
ell user's judgment
ostimulation reje
tion of information byuserna��ve 
ells impli
it (not instantiated)a
tive lympho
yte dete
tormemory lympho
yte dete
tor
ytolyti
 a
tivity 
ensor solution
ross-rea
tive radius dete
tor radiusthymi
 sele
tion prote
ting known desir-able informationillness user exposed to undesir-able dataTable 1: The immunologi
al analogy made expli
it.3.1 Negative dete
tors and shape spa
eAn IIS should be able to remember whi
h pie
es of in-formation a user reje
ted in the past so it 
an 
ensorthem in the future. However, the strategy of reje
t-ing ea
h item individually is ine�e
tive when one isfa
ed with a seemingly limitless variety of information.An IIS must be able to generalize; reje
ting one itemshould impli
itly reje
t similar items. The natural im-mune system has this ability.The adaptive immune system has a repertoire of lym-pho
ytes that dete
t pathogens. Ea
h lympho
yte isspe
i�
 to a parti
ular antigen, or protein signature,expressed by pathogens. If a lympho
yte dete
ts a 
ellwith a mat
hing signature, it may destroy it. How-ever, pathogens may mutate and subtly 
hange theirantigeni
 pro�les, so lympho
ytes should also be ableto re
ognize 
lose variants. Perelson and Oster sug-gested the 
on
eptual framework of shape spa
e [38℄,a high-dimensional spa
e that represents the universeof possible antigens. Every antigen has a lo
ation inshape spa
e, and small mutations in a pathogen mayalter its proteins, thus shifting its lo
ation in shapespa
e. For a lympho
yte to be e�e
tive, it should beable to 
over a large enough area in shape spa
e thatmost mutations would not evade dete
tion. The areain shape spa
e that a lympho
yte 
overs is sometimesknown as its ball of stimulation be
ause it is postulatedthat a lympho
yte 
an re
ognize an antigen within a
ertain radius of its lo
ation in shape spa
e.An IIS 
ould use negative dete
tors to 
ensor informa-tion that the user does not want. As with the naturalimmune system, a dete
tor should be able to 
over avolume in shape spa
e, not just a point. Therefore, itis ne
essary for an IIS to have some notion of the sim-ilarity between two pie
es of information. Two itemsthat are similar are 
lose in \information spa
e." Col-laborative �ltering te
hniques 
ould be used in 
asesin whi
h it is too diÆ
ult to de�ne a fun
tion that en-




odes the subje
tive similarity between two pie
es ofinformation.3.2 CostimulationBe
ause everyone has di�erent informational needs,ea
h IIS user should be able to de
ide whi
h types ofdata to reje
t. Many information �lters require theuser to write rules to 
ustomize the �ltering, but webelieve that the user should need only to identify ex-emplars of undesirable information. On
e the user re-je
ts a pie
e of information, an IIS should be able toautomati
ally reje
t similar information in the future.In the adaptive immune system, helper T 
ells aregenerally required to 
ostimulate, or a
tivate, 
ells inthe presen
e of a novel pathogen. Helper T 
ells pro-vide 
on�rmation that a pathogen should be elimi-nated. This pro
ess redu
es the 
han
es of immune
ells atta
king the body, whi
h is known as an autoim-mune response. On
e 
ostimulated, the e�e
tor 
ellbe
omes a
tive and 
an attempt to eliminate the in-vader, whether by releasing antibodies in the 
ase of B
ells or by killing the infe
ted 
ells dire
tly in the 
aseof 
ytotoxi
 T 
ells. Some 
o-stimulated 
ells be
omememory 
ells, whi
h are long-lived. In future en
oun-ters with the same pathogen, memory 
ells have lesseror even no 
ostimulation requirement.In an IIS, the user 
ould adopt the role of the helper T
ells by providing 
ostimulation signals to the system,an idea introdu
ed in [19℄. The idle 
ells waiting for
ostimulation are impli
it|only dete
tors 
orrespond-ing to a
tive or memory 
ells need to be instantiated.When the user reje
ts a pie
e of information, a de-te
tor spe
i�
 to that item would be 
reated. Thesedete
tors would prevent any similar data from beingpresented in the future. The user's only responsibilitywould be to inform the IIS when undesirable data arebeing presented.3.3 The addition of negative sele
tionWhen the user has reje
ted a suÆ
ient amount of in-formation, the spa
e not 
overed by dete
tors approx-imates the spa
e of useful information (Figure 1). Un-fortunately, useful information that is too similar tounwanted information runs the risk of being 
ensoredby an IIS negative dete
tor. Therefore, we suggest in-
orporating a te
hnique that the adaptive immune sys-tem uses to prevent the immune system from atta
kingthe body's own 
ells.The adaptive immune system uses thymi
 sele
tion toeliminate T 
ells that may harm the body. Before T
ells 
an enter the repertoire, they are exposed to alarge sample of the body's own proteins. Those thatbind too tightly to one of the body's proteins are elimi-nated in a pro
ess known as negative sele
tion. There-fore, the T 
ells that survive are not likely to re
ognizea self protein.
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XFigure 1: Coverage in the model without negative se-le
tion. The shaded regions represent information thatis useful. The 
ir
les represent the extent of a
tive de-te
tor 
overage. The Xs without 
ir
les represent thedete
tors that should never be 
ostimulated be
ausethey are within the regions of a

eptable solutions.A similar strategy 
ould be employed in advan
e by anIIS to prote
t types of information known to be useful.These types 
ould be de
lared \o�-limits" to the IISand would be allowed to bypass the IIS to rea
h theuser. This is espe
ially useful when the 
hara
teristi
sof 
ertain desirable information are known a priori.For example, the IISs of a 
ompany's employees shouldprobably not be allowed to eliminate oÆ
ial 
ompanye-mail. When a user 
ostimulates a solution whosedete
tor would 
over some desirable information, thesystem 
ould ignore the 
ostimulation signal be
ausethere should be no \impli
it" dete
tors in this region.No information from the \good" regions of informationspa
e will ever be 
ensored by the dete
tors (Figure 2).3.4 The role of senes
en
eUsers may want to �lter out some types of informationfor only a short period of time. For example, if a radiostation plays a song too frequently or if a news storyre
eives too mu
h 
overage, a listener may tire of it.These individuals may a
tually enjoy hearing the songor listening to new developments in the news story at alater date, so the dete
tors would be 
ounterprodu
tiveafter their \natural" lifetimes.A
tive immune 
ells have short lifetimes, and memory
ells 
an be eliminated by 
ompetition for spa
e [45℄.These features may be desirable in the algorithm fortwo reasons. The �rst is to provide \rolling 
overage"of self. If the �tness fun
tion (e.g. the user's tastes)
hange over time, one 
ould have the lifetime of thea
tive immune 
ells be �nite to re
e
t the dynami
 na-ture of the user's judgment. The se
ond reason is spa
eeÆ
ien
y. It may not be feasible to store an unboundednumber of dete
tors. One 
ould \age out" old dete
-
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Figure 2: Coverage in the model using negative sele
-tion. The dotted 
ir
les represent the extent of de-te
tors that are eliminated by negative sele
tion. Thesolid 
ir
les are regions 
overed by a
tive dete
tors.Note that none of the useful information prote
ted bynegative sele
tion (the shaded regions) 
an be 
overedby dete
tors.tors to make room for new ones. Alternatively, theuser 
ould manually 
reate memory dete
tors to 
overpatterns that he or she never wants to see again.3.5 The e�e
t of historyThe order in whi
h an IIS is exposed to information
an have impa
t on its e�e
tiveness. Su
h phenomenahave been observed in the natural immune system, par-ti
ularly in the 
ase of in
uenza. Immunologists havedis
overed that the response to a strain of 
u may bedominated by 
ells that were 
reated in response to anearlier exposure to a di�erent strain [10, 13℄. Thesememory 
ells are probably most e�e
tive against thestrain that generated them, but they 
an respond torelated ones. This phenomenon is known as originalantigeni
 sin, and many va

ines take advantage of thise�e
t. For example, if one is exposed to the relativelyharmless 
owpox ba
teria, one is prote
ted against therelated but deadly smallpox [23℄. Unfortunately, priorexposure to antigens 
an also work against us [46℄. Forexample, a 
u va

ine works by eli
iting a mild re-sponse to a parti
ular strain's 
u antigens so that anindividual will be able to mount an e�e
tive se
ondaryresponse when exposed to it in the future. However,the memory 
ells 
reated by a va

ine from a previousyear may atta
k and eliminate subsequent va

ines be-fore they 
an establish prote
tive immunity. If the �rstva

ine does not provide prote
tion against the strains
orresponding to these later va

inations, this individ-ual would be vulnerable to them (Figure 3). If thisindividual had not re
eived this �rst va

ine, the sub-sequent va

ines 
ould have been e�e
tive.One should be able to \va

inate" an IIS by exposing

B

C

A

Figure 3: The e�e
t of history. The dots labeled \A"and \B" and \C" represent solutions the user does notlike. The 
ir
les are the extents of their negative dete
-tors, or \balls of stimulation". If solution A is reje
tedby the user �rst, the dete
tor that forms around itwould reje
t B before it 
ould be presented. However,C 
ould be presented be
ause it does not fall withinthe s
ope of the dete
tor for A. However, if B had beenpresented �rst, the story would be di�erent. Neither Anor C would be seen after B be
ause its dete
tor would
over all three solutions.it to undesirable information without ne
essarily ex-posing the user. This would allow an administrator topreemptively blo
k the passage of 
ertain kinds of in-formation to a user. For example, a 
orporation mightprohibit 
ertain kinds of e-mail or web traÆ
, su
has pornography or personal e-mail. The 
orporation
ould \va

inate" the IISs of its employees with exem-plars from the banned 
ategories, and the employeeswould not be exposed to these kinds of information.Be
ause the order in whi
h an individual is exposedto undesirable information may a�e
t the 
overage ofthe individual's IIS, the va

ination strategy should beplanned with 
are.4 Appli
ationsThe most obvious use of an IIS of the sort des
ribedhere is information �ltering. An IIS 
ould serve as apersonalized interfa
e agent that learns a user's pref-eren
es for sour
es of information or for a range of op-tions that is too large or dynami
 for a user to evalu-ate. Be
ause it only requires feedba
k when the useris exposed to something he or she does not want andit learns without using separated training and test-ing phases, an IIS 
ould be a non-intrusive additionto many user interfa
es. It 
ould 
omplement a
tivestrategies, su
h as information retrieval, that sear
hfor potentially useful information.The IISs of individuals 
an be 
ombined to produ
e agroup IIS. One 
an think of an IIS as a sieve that �l-
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Figure 4: An information immune system as a sieve.The IIS stands between a stream of information anda user, blo
king a signi�
ant portion of it. Only theinformation that 
an pass through the \sieve" a
tuallyrea
hes the user. When the IISs of multiple users areapplied in serial, the information that passes all IISsare \
onsensus solutions".ters undesirable information. The data that 
an passthrough the \sieves" of many people are those that arelikely to satisfy all of them (Figure 4). We 
all thesedata 
onsensus solutions. A group IIS would be usefulwhen the group is exposed to shared information. Forexample, if 
o-lo
ated people want to listen to musi
together, one would want to play musi
 that none of theindividuals dislikes. It remains to be seen how well agroup IIS will work with a large group of users in a par-ti
ular domain. Consensus-�nding will be
ome moreimportant with the in
rease in the number of intelli-gent environments that automati
ally respond to theusers' needs. For example, smart home te
hnology 
anadjust the musi
, artwork, temperature, and lightingto a

ommodate its o

upants. Most resear
h fo
useson 
atering to a single individual [26, 17, 51, 20℄, butfor many environments it will be important to satisfythe preferen
es of multiple o

upants.An IIS 
ould be used to assist designers and artists [7℄.If a random sour
e of design solutions or works of artwere fed to an IIS, only those that are not similar tothose reje
ted in the past would pass through. Thequality of the solutions from this �ltered stream shouldbe signi�
antly better than the un�ltered stream. This
ould be a useful strategy for design problems in whi
ha designer or artist is interested in exploring a largerange of possible solutions. The solutions 
ould bere�ned or optimized using other te
hniques, su
h asevolutionary design [3℄.Collaborative design 
ould be fa
ilitated by using theIISs of multiple individuals. The 
ombination of IISs isthe superset of solutions that people dislike. Consen-

sus solutions are not optimal solutions, but a varietyof solutions that are \good enough" for everyone. In
ertain 
ases, it would be preferable to 
ombine the fa-vored solutions of ea
h of the group members insteadof using a group IIS. This 
ould be done by taking theinterse
tion of the favored solutions of the members orby 
ombining (hybridizing) them. The former strat-egy is problemati
 when the solution spa
e is too largefor a user to spe
ify the set of all a

eptable solutions(as was found with GroupCast[33℄) or if the knowledgeof a user's preferen
es is in
omplete. In these 
ases,interse
tions will be diÆ
ult to �nd. The latter strat-egy of 
ombining solutions 
an be diÆ
ult. It is oftennot obvious how to 
ombine the desirable traits of twosolutions to produ
e a third good solution. By 
ombin-ing the dislikes of multiple users, the spa
e of potential
andidate solutions is likely to be larger and there isno need to 
ombine solutions.5 An example: An aestheti
information immune systemWe have applied the prin
iples dis
ussed in this paperto design a simple IIS that generates 
omputer art [7℄,and we summarize the results here. The IIS 
hara
ter-ized several users' preferen
es for a parti
ular family of
omputer-generated images known as Biomorphs [11℄.Biomorphs are re
ursively drawn �gures that 
an bede�ned by nine parameters. Ea
h user was shown aset of randomly generated Biomorphs and instru
tedto reje
t those that he or she did not like. For ea
huser, an IIS was 
reated based on the parameters ofthe reje
ted Biomorphs. The IIS �ltered out any im-ages that had parameters similar to those reje
ted inthe past, and they formed a rough estimate of the partsof Biomorph parameter spa
e that ea
h user wanted toavoid.We tested whether a user 
ould use an IIS to �lter astream of randomly generated Biomorphs to produ
ean edited stream of high quality Biomorphs, based onthe subje
tive judgments of the user. We also investi-gated group IISs that applied the IISs of several usersin serial. We wanted to determine if the addition ofother users' IISs would enhan
e or degrade the qual-ity of a single user's IIS. These e�e
ts were measuredby having the users evaluate three sets of randomlygenerated Biomorphs that were �ltered using no IIS,their own IIS, a group IIS 
omposed of seven users'IISs. Most users preferred the Biomorph images �l-tered using their own IISs to the un�ltered ones, sug-gesting that the IISs had preferentially �ltered out im-ages that would have been reje
ted by the users. Thegroup IIS was less su

essful, possibly be
ause of di�er-en
es among the users' Biomorph aestheti
 preferen
esor possibly be
ause of the 
oarseness of the dete
tors(we used quite 
oarse-grained dete
tors in order to re-du
e the training time for ea
h user). We repeatedthe test with a subset of three users and a group IIS




omposed of only these three users' IISs. The imagesprodu
ed by this smaller group's IIS were per
eived tobe better than un�ltered, and ea
h user found theseimages to be no worse than those produ
ed using theirown IISs, indi
ating the possibility of a 
onsensus so-lution.6 Con
lusionsWe believe that information immune systems 
ouldplay an important role in this age of information over-load. To date, we as a so
iety have developed only
rude 
oping me
hanisms to allow us to survive theenormous amounts of data to whi
h we are routinelyexposed [35℄. A su

essful IIS would redu
e the loadand make other strategies for �nding and pro
essinginformation more e�e
tive.Information immune systems, however, should be�elded with 
aution. As �ltering strategies be
omemore sophisti
ated, the produ
ers of unwanted infor-mation will themselves adapt, 
reating a kind of infor-mation arms ra
e. We see this already in the adapta-tion of magazine advertisements designed to resemble
ontent arti
les and \junk mail" pa
kaged in oÆ
ial-looking envelopes. Even more insidious te
hniques em-bed advertising in 
ontent in whi
h people are inter-ested. Advertisements 
an be wrapped around e-mailfor presentation before the user 
an re
eive it [8℄, 
or-porate logos and produ
ts 
an be digitally edited into�lms and television programs [53℄, and some shows in-tegrate their sponsors' produ
ts into the plotlines [37℄.Even in the absen
e of adaptive adversaries, our infor-mation �ltering te
hnology will drive a sele
tive pro-
ess that will minimize the di�eren
es between desir-able and undesirable information. As our �lters gaineÆ
a
y, undesirable information will evolve to evadethem. The �lters must 
onstantly 
o-evolve or else theywill rapidly be
ome useless. When we begin deployingIISs, we must be prepared to live in a dynami
 infor-mation e
osystem in whi
h our defenses must adaptas qui
kly as the abilities of unwanted information topenetrate them [52℄.A
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Abstract

Over the last decade, a new idea challenging the
classical self-non-self viewpoint has become
popular amongst immunologists. It is called the
Danger Theory. In this conceptual paper, we
look at this theory from the perspective of
Artificial Immune System practitioners. An
overview of the Danger Theory is presented with
particular emphasis on analogies in the Artificial
Immune Systems world. A number of potential
application areas are then used to provide a
framing for a critical assessment of the concept,
and its relevance for Artificial Immune Systems.

1 INTRODUCTION
Over the last decade, a new theory has become popular
amongst immunologists. It is called the Danger Theory,
and its chief advocate is Matzinger [18], [19] and [20]. A
number of advantages are claimed for this theory; not
least that it provides a method of ‘grounding’ the immune
response. The theory is not complete, and there are some
doubts about how much it actually changes behaviour and
/ or structure. Nevertheless, the theory contains enough
potentially interesting ideas to make it worth assessing its
relevance to Artificial Immune Systems.

It should be noted that we do not intend to defend this
theory, which is still controversial [21]. Rather we are
interested in its merits for Artificial Immune System
applications and hence its actual existence in the humoral
immune system is of little importance to us. Our question
is: Can it help us build better Artificial Immune Systems?

Few other Artificial Immune System practitioners are
aware of the Danger Theory, notable exceptions being
Burgess [5] and Willamson [22]. Hence, this is the first
paper that deals directly with the Danger Theory, and it is
the authors’ intention that this paper stimulates discussion
in our research community.

In the next section, we provide an overview of the Danger
Theory, pointing out, where appropriate, some analogies
in current Artificial Immune System models. We then
assess the relevance of the theory for Artificial Immune
System security applications, which is probably the most
obvious application area for the danger model. Other
Artificial Immune System application areas are also
considered. Finally, we draw some preliminary
conclusions about the potential of the Danger concept.

2 THE DANGER THEORY
The immune system is commonly thought to work at
three levels: External barriers (skin, mucus), innate
immunity and the acquired or adaptive immune system.
As part of the third and most complex level, B-
Lymphocytes secrete specific antibodies that recognise
and react to stimuli. It is this pattern matching between
antibodies and antigens that lies at the heart of most
Artificial Immune System implementations. Another type
of cell, the T (killer) lymphocyte, is also important in
different types of immune reactions. Although not usually
present in Artificial Immune System models, the
behaviour of this cell is implicated in the Danger model
and so it is included here. From the Artificial Immune
System practitioner’s point of view, the T killer cells
match stimuli in much the same way as antibodies do.

However, it is not simply a question of matching in the
humoral immune system. It is fundamental that only the
‘correct’ cells are matched as otherwise this could lead to
a self-destructive autoimmune reaction. Classical
immunology [12] stipulates that an immune response is
triggered when the body encounters something non-self or
foreign. It is not yet fully understood how this self-non-
self discrimination is achieved, but many immunologists
believe that the difference between them is learnt early in
life. In particular it is thought that the maturation process
plays an important role to achieve self-tolerance by
eliminating those T and B cells that react to self. In
addition, a ‘confirmation’ signal is required; that is, for
either B cell or T (killer) cell activation, a T (helper)
lymphocyte must also be activated. This dual activation is



further protection against the chance of accidentally
reacting to self.

Matzinger’s Danger Theory debates this point of view
(for a good introduction, see Matzinger [18]). Technical
overviews can be found in Matzinger [19] and Matzinger
[20]. She points out that there must be discrimination
happening that goes beyond the self-non-self distinction
described above. For instance:

• There is no immune reaction to foreign bacteria in the
gut or to the food we eat although both are foreign
entities.

• Conversely, some auto-reactive processes are useful,
for example against self molecules expressed by
stressed cells.

• The definition of self is problematic – realistically,
self is confined to the subset actually seen by the
lymphocytes during maturation.

• The human body changes over its lifetime and thus
self changes as well. Therefore, the question arises
whether defences against non-self learned early in
life might be autoreactive later.

• Other aspects that seem to be at odds with the
traditional viewpoint are autoimmune diseases and
certain types of tumours that are fought by the
immune system (both attacks against self) and
successful transplants (no attack against non-self).

Matzinger concludes that the immune system actually
discriminates “some self from some non-self”. She asserts
that the Danger Theory introduces not just new labels, but
a way of escaping the semantic difficulties with self and

non-self, and thus provides grounding for the immune
response. If we accept the Danger Theory as valid we can
take care of ‘non-self but harmless’ and of ‘self but
harmful’ invaders into our system. To see how this is
possible, we will have to examine the theory in more
detail.

The central idea in the Danger Theory is that the immune
system does not respond to non-self but to danger. Thus,
just like the self-non-self theories, it fundamentally
supports the need for discrimination. However, it differs
in the answer to what should be responded to. Instead of
responding to foreignness, the immune system reacts to
danger.

This theory is borne out of the observation that there is no
need to attack everything that is foreign, something that
seems to be supported by the counter examples above. In
this theory, danger is measured by damage to cells
indicated by distress signals that are sent out when cells
die an unnatural death (cell stress or lytic cell death, as
opposed to programmed cell death, or apoptosis).

Figure 1 depicts how we might picture an immune
response according to the Danger Theory. A cell that is in
distress sends out an alarm signal, whereupon antigens in
the neighbourhood are captured by antigen-presenting
cells such as macrophages, which then travel to the local
lymph node and present the antigens to lymphocytes.
Essentially, the danger signal establishes a danger zone
around itself. Thus B cells producing antibodies that
match antigens within the danger zone get stimulated and
undergo the clonal expansion process. Those that do not
match or are too far away do not get stimulated.
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Danger 
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Figure 1: Danger Theory Model.



Matzinger admits that the exact nature of the danger
signal is unclear. It may be a ‘positive’ signal (for
example heat shock protein release) or a ‘negative’ signal
(for example lack of synaptic contact with a dendritic
antigen-presenting cell). This is where the Danger Theory
shares some of the problems associated with traditional
self-non-self discrimination (i.e. how to discriminate
danger from non-danger). However, in this case, the
signal is grounded rather than being some abstract
representation of danger.

Another way of looking at the danger model is to see it as
an extension of the Two-Signal model by Bretscher and
Cohn [4]. In this model, the two signals are antigen
recognition (signal one) and co-stimulation (signal two).
Co-stimulation is a signal that means “this antigen really
is foreign” or, in the Danger Theory, “this antigen really
is dangerous”. How the signal arises will be explained
later. The Danger Theory then operates by applying three
laws to lymphocyte behaviour (the laws of lymphotics
[20]):

• Law 1. Become activated if you receive signals one
and two together. Die if you receive signal one in the
absence of signal two. Ignore signal two without
signal one.

• Law 2. Accept signal two from antigen-presenting
cells only (or, for B cells, from T helper cells). B
cells can act as antigen-presenting cells only for
experienced (memory) T cells. Note that signal one
can come from any cells, not just antigen-presenting
cells.

• Law 3. After activation (activated cells do not need
signal two) revert to resting state after a short time.

For the mature lymphocyte, (whether virgin or
experienced) these rules are adhered to. However, there
are two exceptions in the lymphocyte lifecycle. Firstly,
immature cells are unable to accept signal two from any
source. This enables an initial negative selection
screening to occur. Secondly, activated (effector) cells
respond only to signal one (ignoring signal two), but
revert to the resting state shortly afterwards.

An implication of this theory is that autoreactive effects
are not necessarily harmful, and are in fact expected
during an infection. This is because any lymphocyte
reacting to an antigen in the ‘danger zone’ will be
activated. These antigens are not necessarily the culprits
for the danger signal. If they are, then the reacting
lymphocytes will continue to be restimulated until the
antigens (and therefore the danger signal) are removed.
After this, they will rest, receiving neither signal one nor
signal two.

On the other hand, lymphocytes reacting to innocuous
(self) antigens will continue to receive signal one from
these antigens, even after the danger (and therefore signal
two) has vanished. Therefore these lymphocytes will be
deleted, and tolerance will be achieved. However, further
autoreactive effects can be expected, partly because ‘self’
changes over time, and partly because of new lymphocyte

generation (particularly B cells, which produce
hypermutated clones during activation).

A problem is posed by the antigen-presenting cell itself,
whose (innocuous) antigens are by definition always in
the danger zone. Lymphocytes reacting to these antigens
might destroy the antigen-presenting cell and thus
interfere with the immune response. The negative
selection of immature lymphocytes protects against this
possibility.

Figure 2 shows a more detailed picture of how the Danger
Theory can be viewed as an extension of immune signals.
These diagrams are adapted from those presented in
Matzinger [19] except for the sixth, which incorporates
suggestions made in Matzinger [20].

In the original view of the world by Burnet [6], only
signal one is considered. This is shown in the first
diagram, where the only signal shown is that between
infectious agents and lymphocytes (B cells, marked B,
and T killer, marked Tk). Signal two (second diagram)
was introduced by Bretscher and Cohn [4]. This helper
signal comes from a T helper cell (marked Th), on receipt
of signal one from the B cell. That is, the B cell presents
antigens to the T helper cell and awaits the T cell’s
confirmation signal. If the T cell recognises the antigen
(which, if negative selection has worked, should mean the
antigen is non-self) then the immune response can
commence. It was Lafferty and Cuningham [17] who
proposed that the T helper cells themselves also need to
be ‘switched on’ by signals one and two, both from
antigen-presenting cells. This process is depicted in the
third diagram.

Note that the T helper cell gets signal one from two
sources – the B cell and the antigen-presenting cell. In the
former case the antigens are not chosen randomly – the
very opposite, since B cells are highly selective for a
range of (hopefully non-self) antigens. In the latter case,
the antigens are chosen randomly (the antigen-presenting
cell simply presents any antigen it picks up) but signal
two should only be provided to the T helper cell for non-
self antigens. It is not necessarily clear how the antigen-
presenting cell ‘knows’ the antigen is non-self. Janeway
[14] introduced the idea of infectious non-self (for
example bacteria), which ‘primes’ antigen presenting
cells, i.e. causing signal two to be produced (fourth
diagram). This priming signal is labelled as signal 0 in the
figures.

Matzinger proposes to allow priming of antigen-
presenting cells by a danger signal (fifth diagram). She
also proposes to extend the efficacy of T helper cells by
routing signal two through antigen presenting cells [20].
We have marked this as ‘signal 3’ in the sixth diagram
(although Matzinger does not use that term, the intention
is clear). In Matzinger’s words “the antigen seen by the
killer need not be the same as the helper; the only
requirement is that they must both be presented by the
same antigen-presenting cell”. This arrangement allows T
helper cells to prime many more T killer cells than they
would otherwise have been able to.
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Figure 2: Danger Theory viewed as immune signals.

The Danger Theory is not without its limitations. As
mentioned, the exact nature of the danger signal is still
unclear. Also, there is sometimes danger that should not
be responded to (cuts, transplants). In fact, in the case of
transplants it is often necessary to remove the antigen-
presenting cells from the transplanted organ. Finally, the
fact that autoimmune diseases do still, if rarely, happen,
has yet to be fully reconciled with the Danger Theory.

3 THE DANGER THEORY AND SOME
ANALOGIES TO ARTIFICIAL
IMMUNE SYSTEMS

Danger theory clearly has many facets and intricacies, and
we have touched on only a few. It might be instructive to
list a number of considerations for an Artificial Immune
System practitioner regarding the suitability of the danger
model for their application. The basic consideration is



whether negative selection is important. If so, then these
points may be relevant:

• Negative selection is bound to be imperfect, and
therefore autoreactions (false positives) are
inevitable.

• The self/non-self boundary is blurred since self and
non-self antigens often share common regions.

• Self changes over time. Therefore, one can expect
problems with memory cells, which later turn out to
be inaccurate or even autoreactive.

If these points are sufficient to make a practitioner
consider incorporating the Danger theory into their model,
then the following considerations may be instructive:

1. A danger model requires an antigen-presenting cell,
which can present an appropriate danger signal.

2. ‘Danger’ is an emotive term. The signal may have
nothing to do with danger (see, for example, our
discussion on data mining applications in section 5).

3. The appropriate danger signal can be positive
(presence of signal) or negative (absence).

4. The danger zone in biology is spatial. In Artificial
Immune System applications, some other measure of
proximity (for instance temporal) may be used.

5. If there is an analogue of an immune response, it
should not lead to further danger signals. In biology,
killer cells cause a normal cell death, not danger.

6. Matzinger proposes priming killer cells via antigen-
presenting cells for greater effect. Depending on the
immune system used (it only makes sense for
spatially distributed models) this proposal may be
relevant.

7. There are a variety of considerations that are less
directly related to the danger model. For example,
migration – how many antibodies receive signal
one/two from a given antigen-presenting cell? In
addition, the danger theory relies on concentrations,
i.e. continuous not binary matching.

There are also a couple of points that might tempt a
practitioner to alter the danger model as presented here.
For example, the danger model has quite a number of
elements. Given that the antigen-presenting cell mediates
the danger signal, we might be able to simplify the model
– for example, do we still need a T helper cell? In
addition, there are some danger signals that might in some
sense be ‘appropriate’ and thus should not trigger an
immune response. In such cases, a method for avoiding
the danger pathway must be found. A biological example
is transplanted organs, in which antigen-presenting cells
are removed.

4 THE DANGER THEORY AND
ANOMALY DETECTION

An intriguing area for the application of Artificial
Immune Systems is the detection of anomalies such as
computer viruses, fraudulent transactions or hardware
faults. The underlying metaphor seems to fit particularly
nicely here, as there is a system (self) that has to be
protected against intruders (non-self). Thus if natural
immune systems have enabled biological species to
survive, can we not create Artificial Immune Systems to
do the same to our computers, machines etc? Presumably
those systems would then have the same beneficial
properties as natural immune systems like error tolerance,
distribution, adaptation and self-monitoring. A recent
overview of biologically inspired approaches to this area
can be found in Williamson [22].

In this section we will present indicative examples of such
artificial systems, explain their current shortcomings and
show how the Danger Theory might help overcome some
of these.

One of the first such approaches is presented by Forrest et
al [11] and extended by Hofmeyr and Forrest [13]. This
work is concerned with building an Artificial Immune
System that is able to detect non-self in the area of
network security where non-self is defined as an
undesired connection. All connections are modelled as
binary strings and there is a set of known good and bad
connections, which is used to train and evaluate the
algorithm. To build the Artificial Immune System,
random binary strings are created called detectors.

These detectors then undergo a maturation phase where
they are presented with good, i.e. self, connections. If they
match any of these they are eliminated otherwise they
become mature, but not activated. If during their further
lifetime these mature detectors match anything else,
exceeding a certain threshold value, they become
activated. This is then reported to a human operator who
decides whether there is a true anomaly. If so the
detectors are promoted to memory detectors with an
indefinite life span and minimum activation threshold.
Thus, this is similar to the secondary response in the
natural immune system, for instance after immunisation.

An approach such as the above is known in Artificial
Immune Systems as negative selection as only those
detectors (antibodies) that do not match live on. It is
thought that T cells mature in similar fashion in the
thymus such that only those survive and mature that do
not match any self cells after a certain amount of time.

An alternative approach to negative selection is that of
positive selection as used for instance by Forrest et al [9]
and by Somayaji and Forrest [22]. These systems are a
reversal of the negative selection algorithm described
above with the difference that detectors for self are
evolved. From a performance point of view there are
advantages and disadvantages for both methods. A
suspect non-self string would have to be compared with
all self-detectors to establish that it is non-self, whilst with



negative selection the first matching detector would stop
the comparison. On the other hand, for a self-string this is
reversed giving positive selection the upper hand. Thus,
performance depends on the self to non-self ratio, which
should generally favour positive selection.

However, there is another difference between the two
approaches: the nature of false alarms. With negative
selection inadequate detectors will result in false
negatives (missed intrusions) whilst with positive
selection there will be false positives (false alarms). The
preference between the two in this case is likely to be
problem specific.

Both approaches have been extended further [10]
including better co-stimulation methods and activation
thresholds to reduce the number of false alarms, multiple
antibody sub-populations for improved diversity and
coverage and improved partial matching rules. Recently,
similar approaches have also been used to detect hardware
faults (Bradley and Tyrrell [1]), network intrusion (Kim
and Bentley [16]) and fault tolerance (Burgess [5]).

What are the remaining challenges for a successful use of
Artificial Immune Systems for anomaly detection?
Firstly, self and non-self will usually evolve and change
during the lifetime of the system. Hence, to be effective,
any system used must be robust and flexible enough to
cope with changing circumstances. Based on the
performance of their natural counterparts, Artificial
Immune Systems should be well suited to provide these
qualities. Secondly, appropriate representations of self
and good matching rules have to be developed. Most
research so far has been concentrated in these two areas
and good advances have been made so far [8].

However, as pointed out by Kim and Bentley [15], scaling
is a problem with negative selection. As the systems to be
protected grow larger and larger so does self and non-self
and it becomes more and more problematic to find a set of
detectors that provides adequate coverage whilst being
computationally efficient. It is inefficient, if not
impossible, to map the entire non-self universe,
particularly as it will be changing over time. The same
applies to positive selection and trying to map all of self.

Moreover, the approaches so far have another
disadvantage: A response requires infection beyond a
certain threshold and human intervention confirming this.
Although one might argue that the operator sees fewer
alarms than in an unaided system, this clearly is not yet
the ideal situation of an autonomous system preventing all
damage. Apart from the resource implication of a human
component, an unduly long delay might be caused by this
necessity prolonging the time the system is exposed. This
situation might be further aggravated by the fact that the
labels self and non-self are often ambiguous and expert
knowledge might be required to apply them correctly.

How can these problems be overcome? We believe that
applying ideas from the Danger Theory can help building
better Artificial Immune Systems by providing a different
way of grounding and removing the necessity to map self

or non-self. To achieve this self-non-self discrimination
will still be useful but it is no longer essential. This is
because non-self no longer causes an immune response.
Instead, it will be danger signals that trigger a reaction.

What could such danger signals be? They should show up
after limited infection to minimise damage and hence
have to be quickly and automatically measurable. Suitable
signals could include:

• Too low or too high memory usage.

• Inappropriate disk activity.

• Unexpected frequency of file changes as measured
for example by checksums or file size.

• SIGABRT signal from abnormally terminated UNIX
processes.

• Presence of non-self.

Of course, it would also be possible to use ‘positive’
signals, as discussed in the previous section, such as the
absence of some normal ‘health’ signals.

Once the danger signal has been transmitted, the immune
system can then react to those antigens, for example,
executables or connections, which are ‘near’ the emitter
of the danger signal. Note that ‘near’ does not necessarily
mean geographical or physical closeness, something that
might make sense for connections and their IP addresses
but probably not for computer executables in general. In
essence, the physical ‘near’ that the Danger Theory
requires for the immune system is a proxy measure for
causality. Hence, we can substitute it with more
appropriate causality measures such as similar execution
start times, concurrent runtimes or access of the same
resources.

Consequently, those antibodies or detectors that match
(first signal) those antigens within a radius, defined by a
measure such as the above (second signal), will
proliferate. Having thereby identified the dangerous
components, further confirmation could then be sought by
sending it to a special part of the system simulating
another attack. This would have the further advantage of
not having to send all detectors to confirm danger. In
conclusion, using these ideas from the Danger Theory has
provided a better grounding of danger labels in
comparison to self / non-self, whilst at the same time
relying less on human competence.

5 THE DANGER THEORY AND OTHER
ARTIFICIAL IMMUNE SYSTEM
APPLICATIONS

It is not immediately obvious how the Danger Theory
could be of use to data mining problems such as the
movie prediction problem described in Cayzer and
Aickelin [7], because the notions of self and non-self are
not used. In essence, in data mining all of the system is
self. More precisely, it is not an issue what is self or non-



self as the designer of the database has complete control
over this aspect.

However, if the labels self and non-self were to be
replaced by interesting and non-interesting data for
example, a distinction would prove beneficial. In this
case, the immune system is being applied as a classifier. If
one can then further assume that interesting data is
located ‘close’ or ‘near’ to other interesting data, ideas
from the Danger Theory can come into play again. To do
so, it is necessary to define ‘close’ / ‘near’. We could use:

• Physical closeness, for instance distance in the
database as measured by an appropriate metric.

• Correlation of data, as measured by statistical tools.

• Similar entry times into the database.

• File size.

A danger signal could thus be interpreted as a valuable
piece of information that has been uncovered. Hence,
those antibodies are stimulated that match data that is
‘close’ this valuable piece of information.

Taking this idea further, we might define the danger
signal as an indication of user interest. Given this
definition, we can speculate about various scenarios in
which the danger signal could be of use. One such
scenario is outlined below for illustrative purposes.

Imagine a user browsing a set of documents. Each
document has a set of features (for instance keywords,
title, author, date etc). Imagine further that there is an
immune system implemented as a ‘watcher’, whose
antibodies match document features. ‘Interesting’
documents are those, whose features are matched by the
immune system.

When a user either explicitly or implicitly indicates
interest in the current document, a “danger” signal is
raised. This causes signal two to be passed, along with
signal one, to antibodies matching any antigen, i.e.
document feature, in the danger zone, i.e. this document.

Stimulated antibodies become effectors, and thus the
immune system learns to become a good filter when
searching for other interesting documents. Interesting
documents could be brought to the user’s attention (the
exact mechanism is not relevant here). The important
thing is that the user’s idea of an ‘interesting’ document
may change over time and so it is important that the
immune system adapts in a timely way to such a changing
definition of (non-) self.

Meanwhile, every document browsed by the user
(whether interesting or not) will be presented to the
antibodies as ‘signal one’. Uninteresting document
features will therefore give rise to signal one without
signal two, which will tolerate the autoreactive antibodies.
The net effect is to produce a set of antibodies that match
only interesting document features.

As mentioned, this example is purely illustrative but it
does show that ideas from the Danger theory may have
implications for Artificial Immune System applications in

domains where the relevance of ‘danger’ is far from
obvious.

6 CONCLUSIONS
To conclude, the Danger Theory is not about the way
Artificial Immune Systems represent data. Instead, it
provides ideas about which data the Artificial Immune
Systems should represent and deal with. They should
focus on dangerous, i.e. interesting data.

It could be argued that the shift from non-self to danger is
merely a symbolic label change that achieves nothing. We
do not believe this to be the case, since danger is a
grounded signal, and non-self is (typically) a set of feature
vectors with no further information about their meaning.
The danger signal helps us to identify which subset of
feature vectors is of interest. A suitably defined danger
signal thus overcomes many of the limitations of self-non-
self selection. It restricts the domain of non-self to a
manageable size, removes the need to screen against all
self, and deals adaptively with scenarios where self (or
non-self) changes over time.

The challenge is clearly to define a suitable danger signal,
a choice that might prove as critical as the choice of
fitness function for an evolutionary algorithm. In addition,
the physical distance in the biological system should be
translated into a suitable proxy measure for similarity or
causality in an Artificial Immune System. We have made
some suggestions in this paper about how to tackle these
challenges in a variety of domains, but the process is not
likely to be trivial. Nevertheless, if these challenges are
met, then future Artificial Immune System applications
might derive considerable benefit, and new insights, from
the Danger Theory.
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Abstract 
It has recently been shown that Artificial 
Immune Systems are not only capable of 
performing classification, but that AIRS, a 
resource limited Artificial Immune System, is 
competitive with some of the best classifiers in 
the world on a broad variety of classification 
problems. This paper explores some of the issues 
that affect the performance of AIRS. These 
include modifications to the algorithm for 
resource allocation, a policy for handling ties and 
approaches to ARB pool organization. 

1 Introduction 

AIRS (Artificial Immune Recognition System) (Watkins, 
2001) is a classifier developed from the principles of 
resource limited artificial immune systems (Timmis and 
Neal, 2001), which have already been shown to be 
effective clustering tools.  

AIRS has been applied to a wide variety of publicly 
available classification benchmarks (Watkins, 2001), 
(Watkins and Boggess, 2002a), (Watkins and Boggess, 
2002b), (Goodman, Boggess and Watkins, 2002). 
Although the initial objective was simply to show that 
artificial immune systems could be used as classifiers, 
AIRS proved to be a very good classifier indeed: thus far 
it has been among the ten most accurate classifiers known 
in every case to which it has been applied, with only one 
exception. Often it outperforms some of the best known 
classifiers in general use. In one classification problem 
from the UCI machine learning repository (Blake and 
Merz, 1998), AIRS’s average performance appears to 
edge out the best reported classification results 
(Goodman, Boggess and Watkins , 2002).  

This performance is intriguing for several reasons: AIRS 
is self-regulatory in that it is not necessary for a user to 
know in advance the best architecture or best set of 
parameters for AIRS to perform well. Modifying the 
user-adjustable parameters of the system allows AIRS to 
be fine-tuned to a given problem domain. Nevertheless 
with no fine-tuning at all, AIRS still tends to perform 
within a few percentage points of its optimum for the 
given domain. Moreover, this is a new classifier, so it 
seems reasonable that further study and development may 
lead to improvements and even better results.  
 

 
This paper explores some aspects of AIRS that might 
affect its performance as a classifier. The remainder of the 
paper is structured as follows; section 2 gives an overview 
of AIRS. Section 3 discusses some of the experiments 
performed on AIRS. This is followed by conclusions, 
acknowledgments and references in that order.  

2 AIRS 
AIRS is modeled mainly on the mechanisms followed by 
the B-cells of the biological immune system. Antigens in 
AIRS are instantiated as feature vectors which are 
presented to the system during training and testing. 
B-cells in AIRS follow the same representation as 
antigens. All the B-cells having similar features are 
represented together as ARBs (Artificial Recognition 
Balls). 

AIRS is a resource-bounded supervised learning system. 
ARBs compete for a fixed number of resources; this helps 
in gradual evolution of those ARBs which represent 
training antigens more closely. Another component of 
AIRS is the pool of memory cells, which are similar to B- 
cells except that they have an extended life span and are 
used for actual classification of test antigens. A pool of 
ARBs is used for breeding candidate memory cells. The 
mechanism to develop a candidate memory cell is as 
follows:  

1. A training antigen is presented to all the memory 
cells belonging to the same class as the antigen. 
The memory cell most stimulated by the antigen 
is cloned.  The memory cell and all the just-
generated clones are put into the ARB pool. The 
number of clones generated depends on the 
affinity between the memory cell and antigen, and 
affinity in turn is determined by Euclidean 
distance between the feature vectors of the 
memory cell and the training antigen. The smaller 
the Euclidean distance, the higher the affinity, the 
more is the number of clones allowed.  

2. Next, the training antigen is presented to all the 
ARB's in the ARB pool. All the ARB's are 
appropriately rewarded based on affinity between 
the ARB and the antigen as follows: An ARB of 
the same class as the antigen is rewarded highly 
for high affinity with the antigen. On the other 
hand, an out of class ARB is rewarded highly for 
a low value of affinity measure. The rewards are 



in the form of number of resources. After all the 
ARBs have been rewarded, the sum of all the 
resources in the system typically exceeds the 
maximum number allowed for the system. The 
excess number of resources held by ARB’s are 
removed in order starting from the ARB of lowest 
affinity and moving higher until the number of 
resources held does not exceed the number of 
resources allowed for the system. Those ARBs, 
which are not left with any resources, are 
removed from the ARB pool. The remaining 
ARBs are tested for their affinities towards the 
training antigen. If for any class of ARB the total 
affinity over all instances of that class does not 
meet a user defined stimulation threshold, then 
the ARBs of that class are mutated and their 
clones are placed back in the ARB pool. Step 2 is 
repeated until the affinity for all classes meet the 
stimulation threshold. 

3.  After ARBs of all classes have met the 
stimulation threshold, the best ARB of the same 
class as the antigen is chosen as a candidate 
memory cell. If its affinity for the training antigen 
is greater than that of the original memory cell 
selected for cloning at step 1, then the candidate 
memory cell is placed in the memory cell pool. If 
in addition to this the difference in affinity of 
these two memory cells is smaller than a user 
defined threshold, the original memory cell is 
removed from the pool.  

These steps are repeated for each training antigen. After 
completion of training the test data are presented only to 
the memory cell pool, which is responsible for actual 
classification. The class of a test antigen is determined by 
majority voting among the k most stimulated memory 
cells, where k is a user defined parameter.  

3 Experiments 

3.1 Handling Ties 

The current version of AIRS follows a k nearest neighbor 
voting scheme for classification. This means that majority 
voting among the k most stimulated memory cells 
determines the class of the test antigen. For a k value of 1 
only the most stimulated memory cell is used for 
prediction. An important question that comes to mind for 
higher values of k is "What should be done in case of a 
tie?’’ That is, how should the class be determined when 
two or more classes have an equal number of memory 
cells among the k strongest stimulated memory cells? One 
straightforward answer to this might be that nothing needs 
to be done: since k is a training parameter, a different 
value of k may be chosen which might result in fewer ties.  

Though this approach may prove successful in many 
cases, there is no guarantee that a value of k which 
minimizes ties will also maximize accuracy. This is 

because the parameter k affects both the accuracy and the 
number of ties independently.  

Since there is no inherent reason to suppose that changing 
the value of k is likely to be the best way to handle ties, 
we therefore propose a number of alternatives for 
handling ties. The effect of these approaches on the 
accuracy of the classifier varies depending on the 
characteristics of the problem.  

The need for these alternatives was realized while testing 
AIRS on the well-known and publicly available yeast data 
set, which  appears to be a difficult classification problem. 
The data set was obtained from the repository of the 
University of California at Irvine (Blake and Merz, 1998) 
and contained 1484 instances representing ten classes. 
Ten-way cross validation was performed and the best 
accuracy rate obtained after optimal setting of parameters 
was 51.23%. For purposes of comparison, the original 
donor of that dataset to UCI, Paul Horton, after extensive 
experimentation on that classification problem reported a 
best accuracy of about 60%, with a best previously known 
accuracy of 55% (Horton and Nakai, 1997). 

Table 1 and Table 2 show some of the characteristics of 
the problem, which suggest that it is the distinction 
between the first three classes that poses the maximum 
challenge to classifiers.  

 

Table 1:  Confusion Matrix for a Test Run on Yeast Data 

 

20 11 6 0 0 0 0 0 0 0 
22 15 5 0 0 0 0 0 0 0 
8 0 7 0 0 0 0 0 0 0 
1 3 0 4 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 7 0 0 0 0 
1 0 0 0 0 2 0 0 0 0 
1 1 1 1 0 0 0 0 0 0 
1 0 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 

 

 

Table 2.  Collision Matrix for Classification Ties in Test 
Run on Yeast Data 

 

0 7 1 1 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

 



The confusion matrix and collision matrix shown in 
Tables 1 and 2 were obtained using a single training 
(1364 instances) and test set (120 instances) of yeast data 
set on AIRS. The contents of the matrices shown in the 
above tables are for the test data only. The value in row i, 
column j of a confusion matrix represents the number of 
instances of class i that were classified as belonging to 
class j. All the diagonal entries therefore represent test 
instances that were correctly classified. All other entries 
represent instances of incorrect classification. As an 
example, the first entry in row 2 of Table 1 shows that 
there were 22 test instances belonging to class 2 that were 
wrongly classified as belonging to class 1. Similarly, the 
first entry in row 3 shows that 8 test instances of class 3 
were wrongly classified as class 1. Indeed, it is the first 
three classes which cause maximum inaccuracy. In part, 
this is because the instances of these classes occur in 
maximum proportions.  

The nature of the yeast classification problem is such that 
the given features are not sufficient to distinguish between 
classes. However, inaccuracy due to wrong prediction of 
class in case of a tie between two or more classes can be 
better handled. Table 2 shows the content of what we call 
the collision matrix that helps to understand this situation. 
An entry in row i, column j of the collision matrix 
represents the number of times an actual member of class 
j was involved in a tie with class i and lost it. It shows that 
class 2 lost to class 1 on seven occasions whereas class 1 
never lost to class 2. The matrices shown are for only one 
instance of training and test sets; nevertheless it is 
representative of our observation over many runs that 
only the upper triangular region of collision matrix 
contained nonzero entries. This was found to be because 
of the approach followed by the original AIRS algorithm 
for tie breaking, which is described next. 

AIRS handles ties on a first labeled first served basis. 
This means that in case of a tie, the class that was labeled 
earlier wins the tie. For example, in the case of the yeast 
problem, class 1 will never lose the tie and class 10 will 
always lose the tie. This is the reason behind high values 
in the first row of the collision matrix. This tie-breaking 
scheme may be appropriate for a k nearest neighbor-style 
classifier if the basic classification algorithm is modified 
to ensure that classes are labeled in decreasing order of 
relative proportion, for in that case a tie will always go in 
favor of the class with higher proportional representation. 
One drawback however is that such a tie-breaking rule 
never rules in favor of the less frequent class.  

We suggest multiple methods for handling ties. Because 
different methods may work best for different 
classification problems, we suggest that the actual choice  
of method be used as a training parameter. 

 Four different approaches for tie breaking were tried and 
are described next. 

1. Sum of affinities:  

This method uses the sum of affinities of memory cells of 
the same class among the k strongest stimulated memory 

cells. The class with highest combined affinity represents 
the predicted class for the test antigen. One feature of this 
method is that it completely replaces the typical k nearest 
neighbor voting scheme, and is always used irrespective 
of an actual tie being present or not. Because it involves 
floating point values the likelihood of a tie is extremely 
remote using this approach.  

Use of sum of affinities gives more influence to highly 
stimulated memory cells, and the relative effect of less 
stimulated memory cells is low. 

2. Selection based on class proportions:  

Unlike the sum of affinities method, this method is 
utilized only in case of an actual tie. It predicts the class 
of the test antigen based on class proportions of 
competing classes in the training set. For example, in a 
two way tie if one of the classes occurred twice as often 
as the other during the training process, than the chances 
of the tie going in favor of that class will be twice that of 
the other. This approach is expected to perform better 
than other approaches for noisy classification problems, 
including the yeast classification problem.  

3. Including more memory cells.  

This method involves looking at more memory cells in 
case of a tie. Memory cells beyond the k strongest 
stimulated ones are also incorporated into the vote one at 
a time until the tie is broken or the number of additional 
memory cells exceeds some predefined value, 
k_additional, which can be set as a fixed proportion of k. 
In case the tie is not broken and the number of additional 
cells becomes equal to k_additional, the selection 
approach described in method 2 may be used.  

This approach effectively increases the k value for those 
test cases where there is a tie while leaving it the same for 
other instances. Consequently, there is some separation 
between the value of k and its effect on accuracy and on 
tie breaking. This approach may be modified so that 
instead of using additional memory cells, fewer memory 
cells may be used until the tie is broken. 

4. First come first served. 

This method uses the affinities of the most stimulated 
memory cell of each of the competing classes to decide 
the tie.  What this means is that once a tie has occurred 
among two or more classes, the class which has the 
highest stimulated memory cell is chosen. 

Table 3 shows accuracy rates obtained for the yeast data 
set using different alternatives for handling ties. These 
results were obtained using the same set of AIRS 
parameters and a single test and training set. Class 
prediction based on relative class proportions seems to 
work best for this case as expected. Also, prediction based 
on looking for more memory cells in case of a tie works 
better than the original approach followed by AIRS.  

The reason behind the better performance of  “selection 
based on class proportion” is that it probabilistically 
breaks the tie based on relative frequency of occurrence 
of various classes during training cycle. As such, it is 



expected to work well for noisy classification problems in 
which the relative frequency of classes may be the only 
useable data in the toughest classification regions of the 
problem space. 

 
Table 3:  Accuracy Rates For Yeast Data Set Using 

Different Approaches For Tie Breaking 
 

Method Accuracy 

  
First labeled first served 46.67 % 

Sum of affinities 44.17 % 

Selection based on class 
proportions 

48.33 % 

Including more memory 
cells 

47.5 % 

First come first served 44.72 % 

 

The “sum of affinities” method does not do particularly 
well for this case. This method will do well if the memory 
cells representing the true classes are more highly 
stimulated in the aggregate than their equally numerous 
but less highly stimulated competitors in the tie-breaking 
region.  

The “First come first served” approach is highly biased in 
favor of highly stimulated memory cells. This approach 
will be helpful when the best memory cells of competing 
classes in the tie-breaking region are representative of 
their classes for that region.   

3.2 ARB Pool Reorganization 

As already described, AIRS uses the memory cell pool for 
actual classification of test antigens, whereas the ARB 
pool is used along with the memory cell pool during 
training. The ARB pool is used as a breeding ground for 
candidate memory cells.  

Watkins (personal communication) modified the ARB 
pool organization so that the most recent version of AIRS 
no longer keeps track of ARBs from previous training 
instances. The reason behind this can be explained as 
follows:  

During training on an antigen, the stimulation threshold is 
used as a stopping criterion. Training on an antigen is 
continued until all the classes satisfy the requirements of 
the stimulation threshold: for all ARBs of the same class 
as the antigen their affinity for the current training antigen 
should be greater than the user-defined stimulation 
threshold. In addition, for all out of class ARBs the 
affinity should be less than (1 – stimulation threshold). 
For example, for a stimulation threshold of 0.8, all in-
class ARBs should have affinities with the training 
antigen greater than 0.8, and all out of class ARBs should 
have affinities less than 0.2. The eventual effect of this 

process is that at the end of training the out of class ARBs 
remaining are extremely distant from the training instance 
and not very useful for producing candidate memory cells 
during training on subsequent antigens. 

Therefore, in the modified version of AIRS (Watkins, 
personal communication), all ARBs from previous 
training are removed, and only the most simulated 
memory cell along with its clones is allowed in the ARB 
pool. This modification does not seem to affect the 
accuracy of the classifier for some of the problems on 
which it has been tested (Watkins, personal 
communication). However, it greatly decreases the 
diversity in the ARB pool. We tried two other approaches 
for ARB pool reorganization. 

1.   In the first approach, the ARBs from previous training 
stages were allowed to exist and compete for resources in 
the ARB pool; however affinities between out of class 
ARBs and the current antigen were not considered. What 
this means is that ARBs from previous instances did not 
undergo mutation and therefore represented previously 
seen antigens and any memory cells developed for them 
more closely. 

2.  In the second approach, the ARBs from previous 
stages were allowed to exist and compete for resources. In 
addition, ARBs of all classes were required to have 
affinities with the training antigen satisfying some 
stimulation threshold, but the stimulation threshold for out 
of class ARBs was somewhat relaxed as compared to in 
class ARBs. 

Table 4 shows the accuracy rates obtained for the iris data 
set using the approaches just described. Five way cross 
validation was performed to achieve these results.  

 

Table 4: Accuracy Rates For Iris Data Set Using Different 
Approaches For ARB Pool Organization 

 

Scheme for ARB pool 
organization 

Accuracy 

  
Competition between ARBs 
of different classes and 
affinities for all classes of 
ARB to satisfy stimulation 
threshold. 

96.7 % 

Competition for resources 
only, affinities between out 
of class ARBs and antigen 
not considered. 

95.56 % 

Competition for resources 
with relaxed condition 
regarding affinities for out of 
class ARBs. 

96.23 % 

 



At least for the present, our results support the assumption 
that diversity of out of class ARBs in the ARB pool is not 
a significant factor in quality of memory cells generated.  

3.3 Resource Allocation 

As already mentioned, AIRS is a resource bounded 
supervised learning system. A fixed number of resources 
are distributed among ARBs based on their affinities for 
current training antigen. This competition of resources 
helps in evolution of ARBs that represent training 
antigens more and more closely. The scheme used by 
AIRS for resource allocation is that half of the resources 
are distributed among ARBs of same class as the current 
training antigen, and the other half is distributed among 
ARBs of other classes. 

Another approach that was tried distributed resources 
based on class proportions obtained from training data. 
The classes of antigen occurring more frequently were 
allocated more resources and those occurring less 
frequently were allocated fewer resources. 

 

Table 5: Accuracy Rates For E.coli And Yeast Data Sets 
Using Different Methods For Resource Allocation. 

 

Method used for 
resource allocation 

Accuracy 
(E.Coli) 

Accuracy 
(Yeast) 

   
Half the resources for in 
class ARBs and the other 
half for out of class 
ARBs. 

85.71 % 52.23 % 

Resource allocation based 
on class proportions. 

86.30 % 51.08 % 

 

Table 5 shows the accuracy rates obtained using the two 
approaches for resource allocation for the yeast and E.coli 
data sets. Five way cross validation was performed for the 
E.coli data set and for the yeast data set ten fold cross 
validation was performed. The results are averaged over 
three runs for each case. It shows a marginal increase in 
accuracy for the E.coli data set using resource allocation 
based on class proportion; however for the yeast data set 
accuracy decreased using this approach.  We point out in 
passing that the best reported accuracy at the UCI web 
site for the E.coli data set is 81% (Blake and Merz, 1998). 

4 Conclusions 

Since AIRS is a very recent classifier, there are many 
possible areas for exploration of the algorithm. In this 
paper we have explored several different algorithms for 
tie breaking which could increase the accuracy of AIRS 
and other k nearest neighbor classifiers, especially for 
tougher classification problems. On the other hand, 
variations on resource allocation and ARB pool 

organization which were investigated were mixed or 
ineffective in improving the original AIRS algorithm.  In 
the course of these investigations, AIRS produced a 
higher average accuracy for one of the testbeds than any 
reported at the UCI repository for that testbed. 
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Abstract

It has previously been shown that a
recommender based on immune system idiotypic
principles can outperform one based on
correlation alone. This paper reports the results
of work in progress, where we undertake some
investigations into the nature of this beneficial
effect. The initial findings are that the immune
system recommender tends to produce different
neighbourhoods, and that the superior
performance of this recommender is due partly to
the different neighbourhoods, and partly to the
way that the idiotypic effect is used to weight
each neighbour’s recommendations.

1 INTRODUCTION
The idiotypic effect builds on the premise that antibodies
can match other antibodies as well as antigens. It was first
proposed by Jerne [6] and formalised into a model by
Farmer et al [3]. The theory is currently debated by
immunologists, with no clear consensus yet on its effects
in the humoral immune system [5]. In a previous paper
[1], we have shown that the incorporation of idiotypic
effects can be beneficial for Artificial Immune System
based recommender systems.

However, in that paper we did not explore the
mechanisms of that beneficial effect. Such an exploration
would seem worthwhile, particularly if this results in
identifying the underlying causes of the improvements of
the ‘characteristics’ of a community (either by changing
its membership, or by evaluating the relative merit of each
member). Such an effect will be generally useful in a
range of applications, of which recommender systems
provide just one example. In addition, a deeper
understanding of the idiotypic effect may prove useful to
the designers of other Artificial Immune System
applications.

In this paper, we present the results of work undertaken to
better understand the idiotypic effect. In order to set the
context, the next section provides a definition of the
idiotypic effect and the following one a brief review of
Artificial Immune System based recommenders. We then
present and discuss the results of our analysis to date.

2 IDIOTYPIC EFFECTS
The idiotypic network hypothesis was first proposed by
Jerne [6]. It builds on the recognition that antibodies can
match other antibodies as well as antigens. Hence, an
antibody may be matched by other antibodies, which in
turn may be matched by yet other antibodies. This
activation can continue to spread through the population.
The idiotypic network has been formalised by a number
of theoretical immunologists in [7]. This theory could
help explain how the memory of past infections is
maintained. Furthermore, it could result in the suppression
of similar antibodies thus encouraging diversity in the
antibody pool.

The following is a formal equation for the idiotypic effect
adapted from Equation 3 from Farmer [3]:
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Where:

N is the number of antibodies

n is the number of antigens.

xi (or xi) is the concentration of antibody i (or j)

yi is the concentration of antigen j

c is a rate constant

k1 is a suppressive effect and k2 is the death rate

mji is the matching function between antibody i and
antibody (or antigen) j



As can be seen from the above equation, the nature of an
idiotypic interaction can be either positive or negative.
Moreover, if the matching function is symmetric, then the
balance between “I am recognised” and “Antibodies
recognised” (parameters c and k1 in the equation) wholly
determines whether the idiotypic effect is positive or
negative, and we can simplify the equation. We can
simplify the equation still further if we only allow one
antigen in the Artificial Immune System. The simplified
equation looks like this:
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Where:

k1 is stimulation, k2 suppression and k3  death rate

mi is the correlation between antibody i and the (sole)
antigen

xi (or xi) is the concentration of antibody i (or j)

y is the concentration of the (sole) antigen

mij is the correlation between antibodies i and j

n is the number of antibodies.

3 RECOMMENDER SYSTEM
At this point, it is worth reviewing how this model can be
applied to recommender systems. Full details can be
found in [1], but a brief overview follows.

Recommender systems are those that use collaborative
filtering techniques to produce predictions and
recommendations [4]. So for example a movie
recommender system would, given a film, provide a
prediction for that film (i.e. an estimated rating for you).
It might also provide a list of recommended films (i.e.
films which it estimates that you would prefer over
others). It does this by comparing users together (based on
their votes for movies), and preparing some
‘neighbourhood’ of like-minded users from which it can
produce predictions and recommendations.

The main loop of the recommender algorithm is shown in
Figure 1 and is the core of our Artificial Immune System.
The aim of this algorithm is to increase the concentrations
of those antibodies (database users) that are similar to the
antigen (target user) and yet different from each other.
The process is thus subject to the suppression of similar
antibodies following Jerne’s idiotypic ideas mentioned
above. Thus, over time the Artificial Immune System
contains high concentrations of a diverse set of users who
have similar film preferences to the target user.

The algorithm is terminated either when there are no more
users to try, or when the Artificial Immune System is
stabilised, i.e. it is full, and has not changed in
consistency for more than ten iterations. The
concentrations and correlations of the users in the final
neighbourhood, i.e. final immune system iteration, are

then used to calculate a weighted sum of the ratings of
movies.
Initialise Artificial Immune System

Encode user for whom to make predictions as
antigen Ag

WHILE (Artificial Immune System not stabilised)
& (More data available) DO

Add next user as an antibody Ab

Calculate matching score between Ab and Ag

Calculate matching scores between Ab and other
antibodies 

WHILE (Artificial Immune System at full size) &
(Artificial Immune System not stable) DO

Iterate Artificial Immune System

OD

OD

Figure 1: Main loop of the Artificial Immune System’s algorithm for
recommendation.

Our previous work [1] compared two predictors, one
based on a Simple Pearson test and one on our Artificial
Immune System. In each case, a test user is taken from a
database, and then predictions and recommendations are
made for that user. Both predictors work by finding a
neighbourhood and using that neighbourhood to produce
predictions and recommendations.

Prediction quality is assessed by measuring the mean
absolute error (details in [1]). Recommendation quality is
assessed by comparing the ranked recommendations with
the user’s ranked ratings for the recommended films.
Kendall’s Tau can now be applied. This measure reflects
the level of concordance in the lists, and proceeds by
counting the number of discordant pairs. To do this we
order the films by actual vote and apply the following
formulae to the recommended films:
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Where:
n is the overlap size
ri is the actual rank of film i as recommended by the
neighbourhood.

Note that i here refers to the recommended rank of the
film, not the film ID. ND is the number of discordant pairs,
or, equivalently, the expected cost of a bubble sort to
reconcile the two lists. D is set to one if the rankings are
discordant.
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Figure 2: Effect of stimulation rate on neighbourhood size and reviewers looked at.

For the Simple Pearson case, the neighbourhood is
composed of the ‘top N’ correlated users, where
correlation is measured by the Simple Pearson statistical
measure. In the Artificial Immune System case, the
neighbourhood is created by building an immune system
with the test user as the antigen, the neighbours as
antibodies, and the Simple Pearson measure as a matching
function. (In fact, in our experiments, this measure was
weighted by the a fraction proportional to the number of
films both users had seen, in order to penalise correlations
made on the basis of only a few films). The behaviour of
the neighbourhood is then governed by equation 2, with
poorly performing antibodies being deleted from the
neighbourhood. Note that we have treated the idiotypic
effect as suppressive.

4 ANALYSIS OF EFFECTS
Although both the Artificial Immune System and Simple
Pearson recommender algorithms are based on Pearson
correlations, they act differently for a number of reasons:

• The choice of neighbours is different. In the Simple
Pearson, the 100 highest correlated users (or all users
that show any correlation, if this is less than 100) are
chosen to form a neighbourhood. In the Artificial
Immune System, this general rule is followed, except
that stimulation adds threshold and idiotypic effect
adds diversity.

• Even given the same neighbours, the weighting is
different. In the Simple Pearson, the neighbour
weight is simply the correlation between that
neighbour and the test user. In the Artificial Immune
System, this correlation is multiplied by that
antibody’s (neighbour’s) concentration, which in turn
is determined by running the Artificial Immune
System algorithm over the neighbourhood.

To deal with the first point, the stimulation rate provides
some fixed threshold for the correlation of any antibody
with the antigen. Even in the absence of any idiotypic
interactions, an antibody’s correlation (weighted by the
stimulation rate) must outweigh the death rate; otherwise,
it will not survive in the Artificial Immune System. So, at

low stimulation rates it may prove difficult to fill the
Artificial Immune System completely. Conversely, at
very high stimulation rates it may not be necessary to
examine all the supplied users in order to fill an Artificial
Immune System.

This effect was noted in our previous paper [1] and can be
seen in Figure 2. Such a thresholding effect has been
shown to be beneficial by Gokhale [4] in maintaining the
quality of a neighbourhood by filtering out poorly
correlated users (the Simple Pearson will consider all
reviewers who have at least one vote in common with the
test user).

Thus, the idiotypic effect should be viewed in the context
of providing further refinement to a neighbourhood that is
already known to be in some sense ‘good’. Since the
effect (in our model) is always negative, its impact may
be to improve diversity by removing ‘suboptimal’ users
from the Artificial Immune System. Conversely, it might
be that the idiotypic effect is effective because, given a
neighbourhood, it changes the weight of each neighbour
(or concentration of each antibody) in that
neighbourhood. This is the second point highlighted
above.

In order to test out these hypotheses, we took a sample
result, based on 100 predictions for detailed analysis. The
3 settings for each algorithm were as detailed in [1]
except that default votes were not used. Thus, if a
neighbour has not seen a film then that neighbour is
ignored when making a prediction for that film. The
Artificial Immune System parameters were set to ‘good’
values (as observed in the previous paper): thus
stimulation rate was set to 0.3 and suppression rate to 0.2.
As reported previously, the prediction performance (mean
absolute error) was not significantly different between the
two algorithms, but recommendation (Kendall’s Tau) was
significantly better for the Artificial Immune System
recommender (as before, a Wilcoxon matched pairs
signed rank test was used to assess significance).
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Figure 3: Comparison of Artificial Immune System and Simple
Pearson neighbourhoods. The total size of each bar represents the
total size of the neighbourhoods produced by each predictor
(averaged over 100 predictions; bar shows standard deviation). The
lower part of each bar shows the average number of common
neighbours (i.e. appearing in both neighbourhoods). The remainder of
the bar is composed of unique neighbours – that is, neighbours who
appeared in one neighbourhood but not the other.

The first thing to observe is that the neighbourhoods
produced by each algorithm are different. As implied
from the above, Simple Pearson tended to produce large
neighbourhoods (average 95.4 as opposed to 73.8 using
the Artificial Immune System) and Figure 3 shows that
the composition of these neighbourhoods is different. In
particular, it does not seem that the Artificial Immune
System neighbourhoods are merely subsets of the
Simple Pearson neighbourhoods. In fact, the vast
majority of neighbours are ‘unique’ – that is, chosen by
one algorithm but not the other

Is it the neighbourhoods that make the difference to
prediction and recommendation performance? Figure 4
shows Artificial Immune System and Simple Pearson
performance on both neighbourhoods. For this
experiment, we recorded the neighbourhoods found by
both the Artificial Immune System and Simple Pearson
algorithms.

We then reran the predictions, with everything the same
except that this time we forced the Artificial Immune
System and Simple Pearson algorithms to use our
‘fixed’ neighbourhoods. We can see that for prediction,
changing the neighbourhood (or indeed algorithm) did
not seem to make any significant difference (Table 1
has the details of the statistical tests). However, for
recommendation, although the means are very similar
(Fig 4), the Artificial Immune System neighbourhood
usually produced better recommendations than the
Simple Pearson neighbourhood (Table 1b). In fact, the
neighbourhood effect seems to dominate, since given
the Artificial Immune System neighbourhood, the
Simple Pearson algorithm appears to do significantly
better than the Artificial Immune System algorithm for
recommendation. There is one exception to this trend,
where the Artificial Immune System algorithm does not
do significantly better for either neighbourhood. In
addition, the Artificial Immune System algorithm does
better on the Simple Pearson neighbourhood than the
Simple Pearson algorithm does, indicating that the
neighbour weightings, as well as the neighbours
themselves, also contribute to the recommendation
quality.

We ran these experiments using default votes
(neighbours who had not voted on a film were assumed
to give the film a slightly negative rating) and obtained
similar results.

It is worth pointing out at this stage that these results
should not be taken to be exhaustive, merely indicative.
Indeed, we would not want to draw any firm
conclusions based on only 100 predictions. This point
will be returned to in the discussion. Nevertheless, the
results obtained so far seemed to indicate that it was
worth investigating the contribution of neighbourhood
composition to recommendation performance.

Fig 4a Fig 4b
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Figure 4: Effect of neighbourhood composition for Artificial Immune System and Simple Pearson algorithms. See text for details on fixing the
neighbourhoods. Fig 4a shows prediction performance (measured as mean absolute error averaged over 100 predictions) for each algorithm and each
neighbourhood. Fig 4b shows recommendation performance deviation. (measured as Kendall’s Tau averaged over 100 predictions) for each algorithm
and each neighbourhood. Bars show standard deviation.



Table 1: Analysis of differences between neighbourhoods and algorithms for both prediction (1a) and recommendation
(1b). In each case, the Wilcoxon significance test was applied to the results obtained from each pair of regimes. Regimes
that are significantly better are shown in bold (there were no significant differences found for prediction). [AIS =
Artificial Immune System; SP = Simple Pearson]

Table 1a
1st

Predictor
1st

neighbourh
ood

2nd

Predictor
2nd

neighbourh
ood

Median 1 Median 2 Number of
(unequal)

predictions
compared

1st regime
better

(sum of
ranks)

2nd regime
better

(sum of
ranks)

Significanc
e (upper
bound)

SP SP AIS SP 0.682 0.697 97 2212 2541 0.5551
SP SP SP AIS 0.682 0.658 97 2163 2590 0.4434
SP SP AIS AIS 0.682 0.652 97 2176 2577 0.4717
AIS SP SP AIS 0.697 0.658 97 2256 2497 0.6659
AIS SP AIS AIS 0.697 0.652 97 2258 2495 0.6711
SP AIS AIS AIS 0.658 0.652 84 1706 1864 0.7263

Table 1b
1st

Predictor
1st

neighbourh
ood

2nd

Predictor
2nd

neighbourh
ood

Median 1 Median 2 Number of
(unequal)

predictions
compared

1st regime
better

(sum of
ranks)

2nd regime
better

(sum of
ranks)

Significanc
e (upper
bound)

SP SP AIS SP 0.525 0.557 83 801 2685 1.917e-05
SP SP SP AIS 0.525 0.549 83 707.50 2778.50 2.617e-06
SP SP AIS AIS 0.525 0.542 85 930 2725 8.483e-05
AIS SP SP AIS 0.557 0.549 82 1218.50 2184.50 0.02571
AIS SP AIS AIS 0.557 0.542 80 1426 1814 0.3534
SP AIS AIS AIS 0.549 0.542 78 2149 932 0.002459

We looked at a variety of neighbourhood parameters (we
might term these community characteristics) across
Simple Pearson and Artificial Immune System
neighbourhoods. Four characteristics are of particular
interest, and each will be discussed in turn. Firstly, it
might seem reasonable to assume that performance
improves with the number of neighbours in a
neighbourhood. However, clearly there is a cost in
collecting neighbours (of appropriate quality) together,
and thus it will be useful if we can provide good quality
recommendations from smaller neighbourhoods.

Another characteristic is the overlap size, which governs
the number of recommendations we can assess (An
overlap is a test user vote that is also contained in the
union of all neighbours’ votes). Thirdly, we looked at
correlation between each neighbour and the test user. A
high correlation shows that neighbours are clustered
‘tightly’ around the test user, which we might imagine
would provide for better recommendations. Fourthly, the
idiotypic effect is expected to reduce the inter-neighbour
correlations. An obvious intuition might be that such a
reduction causes an increase in recommendation quality.

Table 2 shows the difference in these community
characteristics across Simple Pearson and Artificial
Immune System neighbourhoods. It can be seen that the
Artificial Immune System does produce neighbourhoods
that are measurably different in character to the Simple
Pearson neighbourhoods. In summary, the Artificial
Immune System neighbourhoods are smaller, have less

overlap, are generally less correlated with the test user
and have lower inter-neighbour correlations.

In order to test out which (if any) of these characteristics
is crucial, we plotted recommendation performance
against each for the Artificial Immune System algorithm.
The results seem to show that none of these characteristics
on their own influences the performance in a clear way.
Figure 5 shows scatter plots generated for each
characteristic against recommendation quality. Trend
lines (based on a power law) have been added to
emphasise any underlying data trends.

The first plot suggests that neighbourhood size is not
essential in order to obtain high quality recommendations.
The second plot, however, does suggest that small overlap
sizes might be beneficial for producing good
recommendations (regression analysis has not been
performed so at this stage this is merely a suggestion).
This in some sense is intuitive, as it might be easier to
produce higher quality recommendations if there are less
of them. However, a balance needs to be struck here; once
the overlap size gets too low, the neighbourhood may no
longer prove useful to the user.

The third plot shows that, perhaps surprisingly, high
correlation between neighbours and the test user may not
be essential for high quality recommendations. Finally,
the fourth plot would seem to indicate that reduced inter-
neighbour correlation is not important in recommendation
accuracy, or at least if it is responsible, it is part of a wider
effect.



Table 2: Analysis of difference in neighbourhood characteristics between Simple Pearson and Artificial Immune System algorithms. Four
characteristics are shown. In each case, the Wilcoxon significance test was applied to the neighbourhoods obtained from the algorithms. In all four
cases, the value for the Simple Pearson was significantly higher; this is indicated by bold type.

1st Predictor 2nd Predictor Neighbourhood
characteristic

tested

Mean 1 Mean 2 Number of
(unequal)

neighbourhoods
compared

1st

neighourhood
has higher

value
(sum of ranks)

2nd

neighourhood
has higher

value
(sum of ranks)

Significance
(upper
bound)

Simple
Pearson

Artificial
Immune
System

Neighbours 95.40 73.75 97 4602 151 1.196e-15

Simple
Pearson

Artificial
Immune
System

Overlap 47.46 46.39 26 334.50 16.50 5.686e-05

Simple
Pearson

Artificial
Immune
System

Correlation 0.12 0.10 79 2566 594 1.465e-06

Simple
Pearson

Artificial
Immune
System

Neighbour
correlation

0.15 0.04 83 3477 9 3.572e-15

Fig 5a Fig 5b
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Figure 5. Effect of various neighbourhood measures on Artificial Immune System recommendation performance. In each graph, the measure is shown
on the x-axis. The recommendation performance (where available) for each of 100 Artificial Immune System predictions is plotted against this
neighbourhood measure. Trend lines are added to indicate the underlying data trend (if any).



5 DISCUSSION AND CONCLUSIONS
As mentioned previously, it is not claimed that these
results are conclusive. Indeed, much more data is required
before any firm conclusions can be drawn. In this respect,
this paper is very much a work in progress. Nevertheless,
the results to date certainly are indicative, and challenge
certain assumptions. It is hoped that the presentation of
these results will stimulate discussion and interest in the
nature of the idiotypic effect.

It does not seem likely that the idiotypic effect can be
captured by one particular measurement. Nevertheless, it
is likely to be some combination of factors. For example,
we have shown that both the neighbourhood choice and
the weighting of neighbours within that neighbourhood
can influence the recommendation performance. Pinning
down the effect further has proved to be problematic. Our
first intuition – that spreading out neighbours by reducing
inter-neighbour correlation improves recommendation –
appears to be at best incomplete and at worst incorrect.
The mechanisms underlying the effect are clearly subtler
than this.

There are of course other community characteristics that
we could explore. Some (for example, number of
recommendations, overlaps per neighbour, absolute
correlation scores) have been examined and shown to be
equally inconclusive. Some (for example, number of
neighbours voting on each film) remain potential future
subjects for investigation.

Other tests (e.g. setting each neighbour’s concentration to
a random number for immune system predictions, to see
whether accurate concentrations are really necessary)
might shed further light on the relative importance of each
measure. But it is our intuition that such studies might not
really get at the nature of the effect, and that larger scale
or more sophisticated tests will be needed, coupled with
perhaps analytical work, to get at the heart of this
intriguing phenomenon.

There are wider implications for such work. The database
used for this study [2] is based on real peoples’ profiles.
Thus, any headway made into improving neighbourhoods
by the idiotypic effect can have real benefit for other
recommenders – and indeed any community based
application.
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Abstract

Artificial Immune Systems have been used
successfully to build recommender systems
for film databases. In this research, an
attempt is made to extend this idea to web
site recommendation. A collection of more
than 1000 individuals’ web profiles
(alternatively called preferences / favourites /
bookmarks file) will be used. URLs will be
classified using the DMOZ (Directory
Mozilla) database of the Open Directory
Project as our ontology. This will then be
used as the data for the Artificial Immune
Systems rather than the actual addresses. The
first attempt will involve using a simple
classification code number coupled with the
number of pages within that classification
code. However, this implementation does not
make use of the hierarchical tree-like
structure of DMOZ. Consideration will then
be given to the construction of a similarity
measure for web profiles that makes use of
this hierarchical information to build a
better-informed Artificial Immune System.

1 INTRODUCTION
This research is concerned with using Artificial
Immune Systems as a recommender of web sites for
new database members. Thus, a new member of the
database system would be able to export their
bookmark / favourites file and receive a small number
of recommendations of web site addresses (URLs or
Uniform Resource Locators). Unlike a search engine
that will only return specific items a user searches for,
our recommender system should be capable of
providing the user with surprising items of interest.

Artificial Immune Systems are adaptive search
algorithms based on the biological immune system
with the central task of pattern matching between
antigens and antibodies. Thus in our opinion, they are
particularly well suited to data-mining tasks that
involve sifting through large databases and finding
matches to other items. This has been confirmed in
recent research by Cayzer and Aickelin [5] who used
Artificial Immune Systems to recommend films to

new members of a database based on their rating of at
least five films.

As in the research by Cayzer and Aickelin, the type of
Artificial Immune System developed here will be
based on Jerne’s idiotypic network ideas [13]. Hence,
we will build an Artificial Immune System that will
find a group of users in the database who are similar
to the target user in their web site preferences. At the
same time, the idiotypic effects will ensure that this
group is as diverse as possible. Thus, we will have
created an ideal base for predicting and
recommending web sites. To do this successfully two
steps are necessary: building a database that models
individuals’ web profiles using a suitable ontology,
and constructing a suitable measure of how similar
two web profiles are.

The remainder of this paper is organised as follows:
In the next section, a very brief overview of the
immune system is given with particular emphasis on
those features that we intend to exploit here. Section 3
will summarise the research into film prediction and
explain differences and similarities to this piece of
research. The following section describes the data and
ontology used and gives further details about the task
of web site recommendation. Section 5 presents a
description of the intended Artificial Immune System
with an emphasis on the discussion of a suitable
similarity measure. The paper is concluded with a
summary.

2 THE IMMUNE SYSTEM
The human body is protected against foreign invaders
by a multi-layered immune system. The immune
system is composed of physical barriers such as the
skin and respiratory system; physiological barriers
such as destructive enzymes and stomach acids; and
the immune system, which has two complementary
parts, the innate and adaptive immune systems. The
innate immune system is an unchanging mechanism
that detects and destroys certain invading organisms,
whilst the adaptive immune system responds to
previously unmet foreign cells and builds a response
to them that can remain in the body over time.

The immune system is composed of a number of
different agents performing different functions at a
number of different locations in the body. The precise



interaction of these agents is still a topic for debate
[10]. In order to present the important aspects of the
system from a mathematical viewpoint it is necessary
to simplify and present a selective description.

The immune system’s job is to detect antigens, which
are foreign molecules from a bacterium or similar
invader. The innate immune system helps in the
detection process but the main response is through the
adaptive immune system. Two of the most important
cells in this process are white blood cells, called T
cells, and B cells. Both of these originate in the bone
marrow but T cells pass on to the thymus to develop
before, as with B cells, they circulate the body in the
blood and lymphatic vessels.

B cells are responsible for the production and
secretion of antibodies, which are specific proteins
that bind to the antigen. Each B cell can only produce
one particular antibody. The antigen is found on the
surface of the invading organism and the binding of
an antibody to the antigen is a signal to destroy the

invading cell. A diagram from de Castro and Von
Zuben [4] of this process is shown in Figure 1.

Figure 1: Some of the processes involved in the
adaptive immune system.

Whilst there is more than one mechanism at work (see
[8], [10] or [15] for more details), the essential
process for the sake of this research is the matching of
antigen and antibody leading to increased
concentrations of more closely matched antibodies. In
particular, two processes, known as the ‘clonal
selection theory’ by Burnet [3] and the ‘idiotypic
network theory’ by Jerne [13] and [14], are important
to us.

The former can be explained as follows: When an
antibody strongly matches an antigen the
corresponding B cell is stimulated to produce clones
of itself that then produce more antibodies. This
selection of B cells for cloning on the basis of the

antibody match is called the ‘clonal selection
principle’ and will result in increasing concentrations
of that antibody in the body.

However, when the B cells clone themselves they do
not do so exactly, but mutate slightly. Similarly, B
cells may be stimulated when the antibody-antigen
match is not perfect. By allowing mutation, the match
could become better. However, a number of poorer
matches will also be created, and furthermore, some
of the newly produced antibodies could even be
harmful to our own cells. Such cells will die out under
what is known as the ‘negative selection principle’
[10].

The mutation, mentioned above, is quite rapid, often
as much as de Castro and Von Zuben state in [4] “one
mutation per cell division”. This allows a very quick
response to the antigens. This rapid mutation, known
as ‘somatic hypermutation’ [10], may be linked to the
‘fitness’ of the antibody. Hence, those B cells
producing antibodies that are a good match would be
subject to less mutation and vice versa for those that
are not such a good match.

The idiotypic network theory, introduced by Jerne in
[13] and [14], maintains that interactions in the
immune system do not just occur between antibodies
and antigens, but that antibodies may interact with
each other. Hence, an antibody may be matched by
other antibodies, which in turn may be matched by yet
other antibodies. This activation can continue to
spread through the population. However, this
interaction can have positive or negative effects on a
particular antibody-producing cell. The idiotypic
network has been formalised by a number of
theoretical immunologists in [15]. This theory could
help explain how the memory of past infections is
maintained. Furthermore, it could result in the
suppression of similar antibodies thus encouraging
diversity in the antibody pool.

This last possibility was used in the research by
Cayzer and Aickelin [5] in order to preserve diversity.
The Artificial Immune System in their research
produced a pool of users who were similar to the new
entrant to the database, but dissimilar to each other.
Whilst this method produced similar performance in
predicting film ratings to a k-nearest neighbour
approach, the diversity in the pool of recommenders
was found to yield statistically significantly improved
recommendations. Given the sparseness of the web
site search space it may be that suppression of
antibodies on similarity grounds might be
unnecessary. This will be investigated.

There are a number of successful Artificial Immune
System implementations. However, even in the most
complex artificial systems only a fraction of the
functionality of the biological immune system is
exploited. Typically, the antibody-antigen interaction
coupled with somatic hypermutation, form the basis
for many Artificial Immune System applications.
Examples are Timmis et al [18], who used an
Artificial Immune System for clustering multivariate
data, and Hajela and Yoo [11], who combined a
genetic algorithm and an Artificial Immune System to



optimise the design of a 10 bar truss. The research by
Timmis et al also applied the idiotypic network theory
and were successful in both classifying data and
“generalising to cover a larger region of the input
space”. However, the article does not comment on the
effect of modelling a suppression factor between
antibodies. Some of the most promising research to
date has been conducted in the area of computer
security, for instance by Hofmeyr and Forrest in
computer network security [12] and by Kim and
Bentley for fraud detection [15] and [16].

3 ARTIFICIAL IMMUNE SYSTEMS
AS RECOMMENDERS
Whilst most of the applications described above
involve somatic hypermutation, Cayzer and Aickelin
[5] had only identical cloning, not mutation, in their
algorithm. This was because the potential antibodies
were actual users of the film database (EachMovie
database provided by the Compaq Research Centre
[6]). There the task was to find users that were similar
to new entrants to the database. Somatic
hypermutation was not used, since it is not
immediately obvious how to mutate users sensibly
such that these artificial entities still represent
plausible profiles.

For the same reasons, cloning in our intended
Artificial Immune System will make exact copies,
too. Future work might include making inexact copies
to create novel profiles once appropriate rules for
doing so have been established. This could be
particularly beneficial when data gathering is
expensive or data is otherwise sparse, perhaps due to
its sensitive nature, leading to few users being willing
to share their information with others.

The main loop of the recommender algorithm is
shown in Figure 2 below and is the core of our
Artificial Immune System. The aim of this algorithm
is to increase the concentrations of those antibodies
(database users) that are similar to the antigen (target
user). This process is subject to the suppression of
similar antibodies following Jerne’s idiotypic ideas
mentioned above. Thus, over time the Artificial
Immune System contains high concentrations of a
diverse set of users who have similar film preferences
to the target user.

Initialise AIS
Encode user for whom to make predictions as antigen Ag
WHILE (AIS not stabilised) & (More data available) DO

Add next user as an antibody Ab
Calculate matching score between Ab and Ag
Calculate matching scores between Ab and antibodies
WHILE (AIS at full size) & (AIS not stable) DO

Iterate AIS
OD

OD

Figure 2: Main loop of the Artificial Immune
System’s (AIS) algorithm for recommendation.

The diagrams in Figure 3 show the idiotypic effect. In
the top diagram, antibodies Ab1 and Ab3 are very
similar and they would have their concentrations
reduced in the ’Iterate AIS’ stage of the algorithm
above. However, in the lower diagram, the four
antibodies are well separated from each other as well
as being close to the antigen and so would have their
concentrations increased.

Figure 3: Illustration of the idiotypic effect.

At each iteration of the film recommendation
Artificial Immune System the concentration of the
antibodies changes according to the formula given
below. This will increase the concentration of
antibodies that are similar to the antigen and can
allow either the stimulation, suppression, or both, of
antibody-antibody interactions to have an effect on
the antibody concentration. More detailed discussion
of these effects on recommendation problems are
contained within Cayzer and Aickelin’s paper [5].

The following is a formal equation for the idiotypic
effect adapted from Equation 3 in Farmer [8]:
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xi is the concentration of antibody i
mi is the antibody i and the antigen correlation
mij is the correlation between antibodies i and j
y is the concentration of the antigen
k1 is suppression, k2 stimulation and k3 death rate
k0 is set to zero in our system, i.e. we do not reward
antibody - antibody recognition.

The algorithm is terminated, when the Artificial
Immune System is said to have stabilised, i.e. if it has
not changed in consistency for more than ten
iterations. The concentrations and correlations of the
users in the final neighbourhood, i.e. final immune
system iteration, are then used to calculate a weighted
sum of the ratings of web sites. This would be either a
specific unseen web site by the target user in order to
predict its ratings, or general top 10 recommendations
of new web sites that the target user might enjoy.

4 THE CHALLENGE OF WEB SITE
RECOMMENDATION
There are a number of algorithms that recommend
items to users. One of the best-known examples is
Amazon.com’s [1] book recommender based on
similar items bought. Generally, these recommenders
use what is termed “collaborative filtering“ or “social
filtering” by Billsus and Pazzani [2]. With the
exponential growth of available information on the
internet, the need for automated techniques to winnow
down the possibilities has also grown but “only a few
different algorithms have been proposed in the
literature thus far” [2].

Many of the current collaborative filtering techniques
use the Pearson correlation coefficient to compare the
item ratings of different users. This suffers from
several limitations. For example, due to the extremely
large amount of information to be rated, two users
may only have a very small number of items in
common causing the correlation measure to be unduly
influenced by those items. Further, there is potentially
no difference between the correlation between two
users with three items in common and the measure for
two users with 30 items in common, in terms of their
“influence on the final prediction” [2].

The sparseness of the information space also implies
that two users might have no items in common. Can
we therefore conclude that they have completely
dissimilar tastes, or does the fact that they have not
rated particular items imply a similar view of the
importance of those items? For these reasons,
alternative approaches to both current collaborative
filtering algorithms and to the use of the Pearson
correlation coefficient should be investigated. More
information about traditional and enhanced
collaborative filtering is provided by Gokhale [9]. The
Artificial Immune System presented here is another
example.

In our problem of web site recommendation, the
original data consists of sets of web site addresses or
URLs taken from bookmark collections such as

http://www.cs.ucl.ac.uk/staff/Kim/ComputerImmune.
It is extremely unlikely that many people will have
many exact addresses in common within their web
profiles. Because of this, it is necessary to transform
or translate the addresses into a different form. To do
this a number of steps are necessary and a widely
used web site classification tree ontology will be used
called DMOZ [7].

Let us look at the issues involved in the classification
of URLs systematically. Typically, an individual web
profile in raw form might consist of a list of
bookmarks as shown in Figure 4 (in this case taken
from the Opera browser – only a small section is
shown).

#URL
NAME=ODP - Open Directory Project
URL=http://dmoz.org/
CREATED=1017158736
VISITED=1023875733

#URL
NAME=Open Directory RDF Dump
URL=http://dmoz.org/rdf.html
CREATED=1017159133
VISITED=1023875759

Figure 4: Part of a raw web profile taken from the
Opera browser.

This data has to be pre-processed in order to remove
unwanted information and superfluous characters.
This also includes removing any categories the user
might have assigned to some of the bookmarks.
Unfortunately, such categorisation of information
cannot be kept, as it is arbitrary and individual to the
person that owns the bookmarks. For instance,
www.bbc.co.uk could be classified under ‘media’ by
one person and under ‘news’ by another. In addition,
misclassifications and duplications might be present
in the raw data. Hence, this filtering typically yields a
file such as the one partially shown in Figure 5.

www.bbc.co.uk/weather/
www.bbc.co.uk/
www.bbc.co.uk/sport/english/football/default.stm
www.guardian.co.uk/
football.guardian.co.uk/

Figure 5: Part processed data with superfluous
information deleted.

As can be seen from the third line in Figure 5, some
of the URLs will have long addresses. Another web
profile might contain a very similar address such as
www.bbc.co.uk/sport/english/football/en/default.stm.
If we were to use the raw addresses within the
Artificial Immune System, these two would be
considered different. However, it is clear that the two
users have bookmarked different pages within the



same part of the same site, i.e. ‘BBC online -
football’, and thus have very similar interests.

Therefore, it is still necessary to process the data
before it can be used. This presents considerable
problems. A program will need to be devised which
will truncate the URLs in such a way so that the two
addresses discussed above would be considered the
same. However, looking again at Figure 4, a simple
truncation of the addresses would lead to the first
three items occupying the same category. At the same
time, it might not lead to the last two being picked
together despite the fact that both the addresses refer
to pages from the same site. Furthermore, it might not
put items 3 and 5 together despite the fact that they
are both concerned with football.

To overcome these difficulties, two strategies are used
within the DMOZ ontology: Normalisation and
reverse partial look-up. First, all URLs undergo a kind
of normalisation when pre-formatting the data, as well
as when doing look-ups. The protocol and host part
are mapped to lowercase characters and host only
URLs are always terminated with a “/”. During the
actual look-up, the category information is gained
from DMOZ by employing a reverse truncation
search. That is, at first, we try to match the full URL,
and then we try to match up to the last “/”, then to the
last but one “/” etc.

For instance, we would first try to match item three
from above by looking for the full URL in DMOZ. If
we cannot find that, we would look for
www.bbc.co.uk/sport/english/football/; if this fails,
we would search for www.bbc.co.uk/sport/english/
etc. Alternatively, we could try to find the closest
match in DMOZ defined by the number of
consecutive characters that are identical counted from
the beginning of the URL.

These normalisation and intelligent matching together
should overcome the first problem mentioned above.
To overcome problems of misclassification and to
have a common standard we decided to use the
DMOZ open directory ontology as a classification
system [7]. Figure 6 shows part of the structure of this
directory.

<Topic r:ID="Top/Arts">
<tag catid="2"/>
<d:Title>Arts</d:Title>
<narrow r:resource="Top/Arts/Books"/>
<narrow r:resource="Top/Arts/Music"/>
<narrow r:resource="Top/Arts/Television"/>
[…]
<Topic r:ID="Top/Kids_and_Teens/Pre-School">
<catid>468769</catid>
<link r:resource="http://www.coolplays.com/"/>
<link r:resource="http://kayleigh.tierranet.com/"/>
<link r:resource="http://www.megafile.com.br/"/>
<ExternalPage about="http://www.coolplays.com/">
<d:Title>Coolplay's Cool for Kids</d:Title>
<d:Description>Includes animated nursery rhymes, crafts,
alphabet and spelling games, and colouring book.

Figure 6: Part of the DMOZ open directory structure.

The first half of Figure 6 shows part of the ‘Arts’
category, which is located immediately below the root
of the tree (called Top). Each category has a unique
identifier number (2 in this case). This category has a
number of sub categories that in turn have several sub
categories of their own. In total, there are some 5
million URLs in 428,590 categories spread over 16
levels in the directory. Categories can also be referred
to using an address showing the parent categories in a
way that preserves the tree structure information. For
example, a category address might read ‘1.3.9’
meaning that it is the ninth sub category of category
3, which is the third sub category of category 1.

The second half of Figure 6 shows how URLs are
represented in DMOZ and gives an example of a
more detailed description of one URL as provided by
an anonymous referee. The complete DMOZ database
is roughly one GB in size and updated regularly. All
specifications in this paper refer to DMOZ as of 1
June 2002. Overall, the version of DMOZ that we use
has the following tree structure with deepest branch
being 16 levels below the top:

  1
  18 /
 621 //
 6675 ///
 30754 ////
 61042 /////
 68901 //////
 101567 ///////
 82802 ////////
 51454 /////////
 20592 //////////
 3467 ///////////
 616 ////////////
  69 /////////////
  8 //////////////
  2 ///////////////
  1 ////////////////

Figure 7: Full DMOZ structural tree.

The final stage of processing the data is to turn each
of the URLs, shown in Figure 7, into a file containing
either the category identification numbers or the
category addresses, coupled with the number of items
in each category. The choice about which version to
use will be discussed in the next section.

There are a number of possible pitfalls with this
process. For example, many profiles will contain a set
of URLs, which are created by the browser program
that they use. Few users are likely to delete all of
these links, reasoning that they may be useful at some
stage. This may create a situation of artificial
similarity between users, which would prevent the
Artificial Immune System from functioning
effectively.

Secondly, the process of placing URLs into categories
is likely to involve some truncation if at first there is
no clear category involved. This could lead to several
subtly different addresses being classified into the



same category due to the truncation look-up.
Depending on whether the truncated sites are from
genuinely different URLs or not this could be good or
bad. In the first case, the category may appear to be
more popular than it should be whereas in the second
case the number in the category is a clear indication
of interest in that category. Until the data is fully
assembled and individual examples are checked, it
will not be possible to judge how critical some of
these problems will be.

5 BUILDING THE ARTIFICIAL
IMMUNE SYSTEM RECOMMENDER
In the film recommender research described in Cayzer
and Aickelin [5], each user was coded as a user
identification number followed by pairs of film
identification numbers with the corresponding rating
of the film. The target user became the antigen, whilst
the current database members were potential
antibodies. In each iteration, antibodies were added to
the Artificial Immune System. Those judged to be
more similar to the antigen in their film ratings had
their concentration increased.

A unique feature of that particular approach was the
application of the idiotypic network theory by Jerne
[13]. This was implemented such that antibodies that
were very similar to each other had their
concentration reduced. This has the effect of creating
a set of users who are similar to the new user but quite
different to each other and thus enhancing the
recommendation accuracy of the system. We intend to
use the same mechanism for our web site
recommender to build an Artificial Immune System
as described in section 3.

In order to do this, we also have to decide on the
encoding of a user’s web profile for which there are
two possibilities. In both cases, a user is encoded as a
list of category IDs and the number of bookmarks
within each category. The difference is in the
category IDs; they can be either an integer or a
reference to the tree structure. To illustrate the
difference, Figure 8 shows the same user’s bookmarks
for both encodings. The figures in bold indicate how
many bookmarks fall into a particular category:

Encoding with the Tree structure:
1.13.12.1.5:5;
1.13.12.1.6:3;
1.16.3.2.11.5:1;
1.18.1.2:1;

Encoding with integer category IDs:
22343:5;
495771:3;
334921:1;
3409:1;

Figure 8: Integer versus Tree Encoding.

If the second encoding is used together with the
number of sites within each category as a rating of the
popularity of that category then the problem becomes
similar to the film recommendation problem.

However, here we have a considerably sparser search
space. In the film database, there were approximately
20,000 entries whereas in the DMOZ directory there
are over 400,000 categories. This sparseness may
prevent the system from working since many users
might have nothing in common, or, at best some
categories that are common to the vast majority of the
data. Furthermore, many users will have only one
entry in a number of categories, leading to increased
similarity since the ‘rating’ of that category will be
the same. These problems may prevent an Artificial
Immune System based on this encoding being
successful in identifying a group of similar users.

There is another problem with using integer category
IDs. Because DMOZ is an evolving classification
system, new categories are added and removed
regularly. This can have the effect that two very
similar categories end up with very different integer
IDs as these are handed out consecutively. For
instance, Star Wars part four might have ID 20,004
when it was classified years ago, but Star Wars part
two might end up with ID 420,012 because it has only
recently entered the DMOZ system. A similar effect
can be seen in Figure 8 for the first two bookmarks.
Figure 8 also shows how the tree structure IDs might
prevent some of these problems as similar categories
still end up near each other in the tree.

The alternative to the integer encoding is to use an
encoding that includes the tree structure in the form of
a category address. What is required then is a
similarity measure that carefully recognises categories
that are ‘close’ within the structure of the tree. For
example, it would need to judge the parent / child or
the sibling relationship as being more similar than a
first cousin or grandparent type relationship.
However, constructing such a measure is far from
simple. Consider the two trees in Figure 9.

Figure 9: Simple tree structure showing two web
profiles.
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User 2:
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User 1 has entries at categories G, E, J and L, whilst
user 2 has entries at D, I, J and F. Clearly, matches
should be scored more highly the lower down the tree
they are because this indicates a more precise match.
Additionally, ‘close’ relationships within the tree
structure should count more towards the match than
ones separated by several ‘generations’ (to continue
the family tree metaphor).

Whilst it is easy to see that these users should have
their similarity measure increased, since both have an
entry in category J, a question remains what to do
with J afterwards. Should this match be discarded
once it has been counted by the measure or should the
entries at I and J for user 2 be counted as two entries
at the parent branch (E) for comparison with user 1?
The danger with discarding matches once counted is
that two users might have ‘perfect’ matches for all of
the 10 categories that the first user has in their profile,
whilst the second user has another 100 entries.

However, if one does not discard categories that have
already been matched with another category then it is
possible that one quite high level category might be
‘matched’ with all the different entries at sub-
categories for another user. This might not matter
since the ‘strength’ of the match would have been
reduced by the generational distance and the
weakness of the high-level category’s contribution.

6 SIMILARITY MEASURES
Let us now construct a suitable similarity measure for
the Artificial Immune System that will produce a
value on a 0–1 scale with answers closer to 1
indicating a closer match. Following the discussion in
the previous section, the measure will be built
according to the following five principles.

1. Matching at categories lower down the tree
structure should contribute more to the measure
than matching higher up.

2. Matches at the top level of the tree (i.e. the
‘Top’ category in the DMOZ database should
have a contribution of zero.

3. Matching contribution should be reduced for
‘imperfect matches’ i.e. those not in exactly the
same category. The reduction in contribution
should be proportional to the generational
distance (i.e. a grandparent child relationship has
a generational distance of two.)

4. The matching metric should be scaled
(averaged) so that it ranges from 0 to 1.

5. The matching metric should take into account all
possible matches between the entries in each
web profile, i.e. if there are 10 entries in 1 and
20 in the other then all 10 × 20 = 200 potential
matches should contribute to the measure.

Suppose that we wish to calculate the matching
coefficient for the category addresses 1.3.1.1 and 1.3
in the sample tree diagram in Figure 10 below. We

need to define an ‘edge distance’ as the number of
‘steps’ apart any two addresses are. For example, 1.1
and 1.1.2.2.1 have an edge distance of three, as do
1.2.2.2 and 1.2.1. This equates the relationship
between grandparent and grandchild as the same
strength as that between siblings.

Figure 10: Sample Tree diagram.

By staged truncation of the longer category address
(CA) until they are the same we obtain a match at CA
1.3 with two numbers (edge distances) discarded (but
counted). This match would have a strength
determined by the category level (level 2) of the
matching CA, and by the edge distance (ED).

How should the edge distance affect the value of the
overall match? One possibility would be to use 1 / ED
as this would be a smaller value as the ED increases.
However, this would not work when the CA match
perfectly as we would be dividing by zero. Therefore
using 1 / (ED + 1) is better.

How should the depth of the matching level affect the
value of the overall match? It seems useful to make
the level number the same as the number of integers
in the CA. In the example above, there are six levels.
However, the tree is not of uniform depth. In
principle, matches at lower levels should score higher
since they show a more precise agreement in the topic
matter. However, does this mean that a perfect match
at the bottom of one set of branches (e.g. 1.1.2.2.2)
should score less highly than a perfect match at the
bottom of another lower set, say 1.3.2.2.1.1? The
DMOZ database is a human classification of human
knowledge. To some extent, the classifications are
arbitrary because they are the result of pragmatic as
well as epistemological considerations. Therefore, it
seems incorrect to allow only a perfect match score
when it occurs at the lowest level.

In the example above it might be advisable to allow
perfect matches to contribute fully at levels 4,5 and 6.
Remembering that a match at the top level should
count as zero then a formula to give the level effect
factor would be (L - 1) / (4 - 1) i.e. level 4 would have
a value of 1, level 3 a value of (2/3), level 2 (1/3),
whilst the top level would have a value of zero.
However, this would not work for values of L greater
than 4. To solve this we could use a value of 1 in

1
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1.2.1 1.2.2
1.1.2

1.1.1 1.3.1 1.3.2
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1.2.2.2.2
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1.3.2.2.1.1

NB  All the categories roughly on a line are at the same
level but are shown this way in order to fit in their labels
i.e. 1.1.2.3 is on the same level as 1.2.1.1



those cases. Thus, the general matching formula
becomes min{1, (L-1) / (ML-1)} where ML stands for
the level at which the maximum contribution starts. In
the case of DMOZ, a reasonable choice for the cut-off
point might be level 8 based on the structure in Figure
7.

A disadvantage of the measure just described is the
inherent simplifications of using a cut-off point after
which all matches are equally ‘perfect’. The smaller
the cut-off value, the more inaccurate result will
become. However, if set too large then some branches
of the tree might be too shallow to ever achieve a
perfect match. It is furthermore questionable whether
a linear measure is appropriate. Hence, we propose
the following alternative. The matching scores
monotonically increasing from level 1 to 16 (in
DMOZ’s case) but get close to 1 relatively quickly,
say at level 8, and then approaches 1 asymptotically
as shown in the figure 11.

Figure 11: Shape of proposed matching function.

The following equation describes such a function. Let

webprofile1 contain cai (i = 1...n ) category addresses

webprofile2 contain caj (j = 1…m) category addresses

edi,j be the edge distance from cai to caj

li,j be the matching level for cai and caj

Proposed matching function: 
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This measure still agrees with the principle that
matches at lower levels should score higher but does
not unduly penalise the branches that do not go down
to the full 16 levels. Assuming we sum the
contributions of all the potential matches the total
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matches to transform the metric to a 0 - 1 scale.
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mn

240
ll

-
ed

s

n

1i 1j

ji,
2
ji,

ji,

×




















 +−
×

=
∑∑

= =

m 32331

One further factor should be considered when
calculating the match between two web profiles. It is
the validity of the match if the web profiles have very
different numbers of URLs within them (which we
will call the disparity correction factor).

If one web profile has only 10 items whilst the other
has 100, then a match from these two people would
seem to be less valid than one based on web profiles
containing 50 and 60 items. This is because in the
first case the 10 entries from the first profile have
been used proportionately more in calculating the
match. Assuming that web profile 1 (n entries) is
smaller than web profile 2 (m entries) then finding the
fraction n / m would give a higher result to those pairs
of profiles which have similar numbers of entries (see
column 3 in Figure 12).

However, it would also give a perfect score to two
profiles with a very small number of URLs, say 2
URLs each. Clearly, the measure should ‘reward’ web
profiles that have a larger number of entries. One way
to do this would be to include the sum of the number
of entries. However, some profiles contain a very
large number of entries. Analysis of the data shows
that users with more than 100 bookmarks are likely to
be outliers. Hence, in order to produce a measure in a
range from 0 to 1, profiles with more than 100 entries
are counted as though they have 100 entries. Column
4 in Figure 12 shows the calculation of such a
measure under the assumptions above.

The fifth column in Figure 12 contains the proposed
disparity factor. However, if the raw values in column
5 were used the correction effect would probably be
stronger than the original matching score. Therefore a
scaling parameter a is introduced to reduce the range
of the disparity factor. This parameter determines the
lowest value in the range (a, 1) which the disparity
factor can take.

Figure 12: Disparity correction using a disparity
scaling factor of a = 0.6.

n m n/m (n+m)/200 n/m*(n+m)/200 a+(1-a)*n/m*(n+m)/200
100 100 1.00 1.00 1.00 1.00
80 100 0.80 0.90 0.72 0.89
60 100 0.60 0.80 0.48 0.79
40 100 0.40 0.70 0.28 0.71
20 100 0.20 0.60 0.12 0.65
80 80 1.00 0.80 0.80 0.92
60 80 0.75 0.70 0.53 0.81
40 80 0.50 0.60 0.30 0.72
20 80 0.25 0.50 0.13 0.65
60 60 1.00 0.60 0.60 0.84
40 60 0.67 0.50 0.33 0.73
20 60 0.33 0.40 0.13 0.65
40 40 1.00 0.40 0.40 0.76
20 40 0.50 0.30 0.15 0.66
20 20 1.00 0.20 0.20 0.68
10 20 0.50 0.15 0.08 0.63
10 10 1.00 0.10 0.10 0.64
5 100 0.05 0.53 0.03 0.61
1 100 0.01 0.51 0.01 0.60



Using the same notation as before, with a being the
scaling parameter for the disparity correction factor
the final similarity measure becomes:
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7 CONCLUSIONS
There are a number of steps in the process of
preparing the database for use in the Artificial
Immune System. These may have an effect on the
performance of the system. It will not be possible to
tell how critical these issues are until the project is
near completion. Having constructed the web profile
database the choice of encoding must be made. Again,
this could have a critical effect on the success of the
Artificial Immune System. It is clear that the
construction of a similarity measure that will allow
the use of the tree structure is not a trivial task. It may
be that this is not necessary and exploration of the
potential of the first encoding will be undertaken first
since there is already a successful precedent in this
case. However, the sparseness of the data set may
prevent this, and the creation of a tree comparison
similarity measure is an interesting challenge.

To conclude, we believe that with the correct
matching metric an idiotypic network based Artificial
Immune System should be well suited to supplying
interesting yet surprising URLs based on a user’s
bookmarks. Preliminary results show that with the aid
of DMOZ we can map between 60% and 80% of
users’ bookmarks to votes for suitable categories. We
feel confident that this gives us a strong basis for an
Artificial Immune System recommender and
subsequent result will be published in due course.
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Abstract 
This paper revisits the Artificial Immmune 
Recognition System (AIRS) that has been 
developed as an immune-inspired supervised 
learning algorithm. Certain unnecessary 
complications of the original algorithm are 
discussed and means of overcomming these 
complexities are proposed.  Experimental 
evidence is presented to support these revisions 
which do not sacrifice the accuracy of the 
original algorihtm but, rather, maintain accuracy 
whilst increasing the simplicity and data 
reduction capabilities of AIRS. 

1 INTRODUCTION 
Recently, there has been a great deal of interest in the use 
of the immune system as inspiration for computer science 
and engineering. These Artificial Immune Systems (AIS) 
seem to have great potential, which is as yet unrealized. 
An intuitive application of AIS is in the area of computer 
security, network intrusion detection (Forrest, Perelson et 
al. 1994), (Hofmeyr and Forrest 2000) and (Kim and 
Bentley 2001), change detection, and so on. However, 
AIS are not limited to this field alone. Work has identified 
that the immune system contains certain properties that 
may be useful to create learning algorithms for computer 
science through the exploitation of the natural learning 
mechanisms contained within the immune system (Bersini 
and Varela 1990). However, the focus of current AIS 
research seems to have been on the development of 
unsupervised learning algorithms (De Castro and Von 
Zuben 2000b) and (Timmis and Neal 2001) rather than 
the supervised or reinforcement kind. An exception to this 
is work in (Carter 2000). Recent work in (Watkins 2001) 
explored the possibility of utilizing the immune system as 
inspiration for the creation of a supervised learning 
technique. By extracting useful metaphors from the 
immune system and building on previous immune 

inspired unsupervised learning algorithms, a classifier 
was constructed that seems to perform reasonably well on 
various classification and machine learning problems 
(Watkins and Boggess 2002a). 
This paper presents a further investigation into the work 
of (Watkins 2001) and suggests improvements to the 
algorithm that are capable of maintaining classification 
accuracy, whilst improving performance in terms of 
computational costs and an increase in the data reduction 
capabilities of the algorithm. This paper outlines the 
previous work undertaken in (Watkins 2001), suggests 
improvements to the algorithms and discusses the 
implications of these new results. Attention is then given 
to future possibilities with this approach. 

2 BACKGROUND RESEARCH ON AIRS 
AIRS (Artificial Immune Recognition System) is a novel 
immune inspired supervised learning algorithm (Watkins 
2001). Motivation for this work came from the author’s 
identification of the fact that there was a significant lack 
of research that explored the use of the immune system 
metaphor for supervised learning; indeed, the only work 
identified was that of (Carter 2000). However, it was 
noted that within the AIS community there had been a 
number of investigations on exploiting immune 
mechanisms for unsupervised learning (that is, where the 
class of data is unknown a-priori) (Timmis, Neal et al. 
2000), (Timmis and Neal 2001) and (De Castro and Von 
Zuben 2000b). Work in (De Castro and Von Zuben 
2000a) examined the role of the clonal selection process 
within the immune system (Burnet 1959) and went on to 
develop an unsupervised learning known as CLONALG. 
This work was extended by employing the metaphor of 
the immune network theory (Jerne 1974) and then applied 
to data clustering. This led to the development of the 
aiNet algorithm (De Castro and Von Zuben 2000b). 
Experimentation with the aiNet algorithm revealed that 
evolved artificial immune networks, when combined with 
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traditional statistical analysis tools, were very effective at 
extracting interesting and useful clusters from data sets. 
aiNet was further extended to multimodal optimization 
tasks (De Castro and Timmis 2002b). Other work in 
(Timmis, Neal et al. 2000) also utilized the immune 
network theory metaphor for unsupervised learning, and 
then augmented the work with the development of a 
resource limited artificial immune network (Timmis and 
Neal 2001), which reported good benchmark results for 
cluster extraction and exploration with artificial immune 
networks. Indeed, this work has been further extended by 
(Nasaroui, Gonzalez et al. 2002) with the introduction of 
fuzzy logic and refinement of various calculations. The 
work in (Timmis and Neal 2001) was of particular 
relevance to (Watkins 2001) and the further work 
described in this paper.   
Building on this previous work, in particular the ideas of 
artificial recognition balls and resource limitation from 
(Timmis and Neal 2001) and long-lived memory cells 
from (De Castro and Von Zuben 2000b). AIRS 
demonstrated itself to be an effective classifier. The rest 
of this section describes the immune metaphors that have 
been employed within AIRS, outlines the algorithm and 
discusses results obtained, before progressing to the 
following section, which describes augmentations and 
improvements to AIRS. 

2.1 IMMUNE PRINCIPLES EMPLOYED 
A little time should be taken to draw attention to the most 
relevant aspects of immunology that have been utilized as 
inspiration for this work. A more detailed overview of the 
immune system and its relationship with computer 
science and engineering can be found in (De Castro and 
Timmis 2002a). 
Throughout a person’s lifetime, the body is exposed to a 
huge variety of pathogenic (potentially harmful) material. 
The immune system contains lymphocyte cells known as 
B- and T-cells, each of which has a unique type of 
molecular receptor (location in a shape space). Receptors 
in this shape space allow for the binding of the pathogenic 
material (antigens), with the higher affinity 
(complementarity) between the receptor and antigen 
indicating a stronger bind. Work in (De Castro and 
Timmis 2002a) adopted the term shape-space to describe 
the shape of the data being used, and defined a number of 
affinity measures, such as Euclidean distance, which can 
be used to determine the interaction between elements in 
the AIS. Within AIRS (and most AIS techniques) the idea 
of antigen/antibody binding is employed and is known as 
antigenic presentation. When dealing with learning 
algorithms, this is used to implement the idea of matching 
between training data (antigens) and potential solutions 
(B-Cells).  Work in (Timmis and Neal 2001) employed 
the idea of an artificial recognition ball (ARB), which was 
inspired by work in (Farmer, Packard et al. 1986) 
describing antigenic interaction within an immune 
network. Simply put, an ARB can be thought to represent 
a number of identical B-Cells and is a mechanism 

employed to reduce duplication and dictate survival 
within the population. 
Once the affinity between a B-Cell and an antigen has 
been determined, the B-Cell involved transforms into a 
plasma cell and experiences clonal expansion. During the 
process of clonal expansion, the B-Cell undergoes rapid 
proliferation (cloning) in proportion to how well it 
matches the antigen. This response is antigen specific.  
These clones then go through affinity maturation, where 
some undertake somatic hypermutation (mutation here is 
inversely proportional to antigenic affinity) and 
eventually will go through a selection process through 
which a given cell may become a memory cell. These 
memory cells are retained to allow for a faster response to 
the same, or similar, antigen should the host become re-
infected This faster response rate is known as the 
secondary immune response. Within AIRS, the idea of 
clonal expansion and affinity maturation are employed to 
encourage the generation of potential memory cells. 
These memory cells are later used for classification. 
Drawing on work from (Timmis and Neal 2001), AIRS 
utilized the idea of a stimulation level for an ARB, which, 
again, was derived from the equations for an immune 
network described in (Farmer, Packard et al. 1986). 
Although AIRS was inspired by this work on immune 
networks, it was found that maintaining a network 
representation—with connections, stimulation, and 
repression among the ARBs in the system—was not 
necessary for evolving a useful classifier.  In AIRS, ARBs 
experience a form of clonal expansion after being 
presented with training data (analogous to antigens); 
details on this process are provided in section 2.2. 
However, AIRS did not take into account the affinity 
proportional mutation. When new ARBs were created, 
they were subjected to a process of random mutation with 
a certain probability and were then incorporated into the 
memory set of cells should their affinity have met certain 
criteria. Within the AIRS system, ARBs competed for 
survival based on the idea of a resource limited system 
(Timmis and Neal 2001). A predefined number of 
resources existed, for which ARBs competed based on 
their stimulation level: the higher the stimulation value of 
an ARB the more resources it could claim.  ARBs that 
could not successfully compete for resources were 
removed from the system. The term metadynamics of the 
immune system refers to the constant changing of the B-
Cell population through cell proliferation and death. This 
was present in AIRS with the continual production and 
removal of ARBs from the population. Table 1 
summarizes the mapping between the immune system and 
AIRS. 
 
 
 
 
 



 
 
 
 
 
 

Table 1: Mapping between the Immune System and AIRS 

 
IMMUNE SYSTEM  AIRS 
______________________________________________ 
Antibody Feature vector 
Recognition Ball Combination of feature 

vector and vector class 
Shape-Space The possible values of the 

data vector 
Clonal Expansion Reproduction of ARBs that 

are well matched with 
antigens 

Antigens Training data 
Affinity Maturation Random mutation of ARB 

and removal of lowest 
stimulated ARBs 

Immune Memory Memory set of mutated 
ARBs 

Metadynamics Continual removal and 
creation of ARBs and 
Memory Cells 

 

2.2 THE AIRS ALGORITHM 
The previous section outlined the metaphors that were 
employed in the development of AIRS. This section now 
presents the actual algorithm and discusses the results 
obtained from experimentation. A more detailed 
description of the algorithm and results can be found in 
(Watkins 2001). 
Within AIRS, each element (ARB) corresponds to a 
vector of n dimensions and a class to which the data 
belongs. Additionally, each ARB has an associated 
stimulation level as defined in equation 1, where x is 
feature vector of the ARB, sx is the stimulation of an ARB 
x, y is the training antigen, and affinity, in the current 
implementation, is a function that calculates the Euclidean 
distance: 
 

(1) 
  

 
Notionally, AIRS has four stages to learning: 
initialization, memory cell identification, resource 
competition and finally refinement of established memory 
cells. AIRS is a one-shot learning algorithm; therefore, 
the process described below is run for each antigenic 
pattern, one at a time. Each of these processes will be 
outlined with the algorithm summarized below. 
Initialization of the system includes data pre-processing 
(normalization) and seeding of the system with randomly 
chosen data vectors. Assuming a normalized input 
training data set (antigens), data from that set are 
randomly selected to form the initial ARB population P 
and memory cells M. Prior to this selection, an affinity 
threshold is calculated; this threshold for the current 
implementation is the average Euclidean distance between 
each item in the training data set. This is then used to 
control the quality of the memory cells maintained as 
classifier cells in the system. 
AIRS maintains a population of memory cells M for each 
class of antigen, which, upon termination of the 
algorithm, should have identified suitable memory cells to 
provide a generalized representation for each class of 
antigenic pattern. The first stage of the algorithm is to 
determine the affinity of memory cells to each antigen of 
that class. Then the highest affinity cells are selected for 
cloning to produce a set of ARBs (which will ultimately 
be used to create an established memory set). The number 
of clones that are produced is in proportion to the 
antigenic affinity, i.e., how well they match; the ARBs 
also undergo a random mutation to introduce 
diversification. 
The next stage is to identify the strongest, based on 
affinity to the training instance, ARBs; these will be used 
to create the established memory set used for 
classification. This is achieved via a resource allocation 
mechanism, taken from (Timmis and Neal 2001), where 
ARBs are allocated a number of resources based on their 
normalized stimulation levels. At this point, it is worth 
noting that the stimulation level of an ARB is calculated 
not only from the antigenic match, but also the class of 
the ARB. This, in effect, provides reinforcement for 
ARBs that are of the same class as the antigenic pattern 
being learnt and that match the antigenic pattern well, in 
addition to providing reinforcement for those that do not 
fall into that class and do not match the pattern well. 
Once the stimulation of an ARB has been calculated, the 
ARB is allowed to produce clones (which undergo 
mutation). The termination condition is then tested to 
discover if the ARBs are stimulated enough for training to 
cease on this antigenic pattern. This is defined by taking 
the average stimulation for the ARBs of each class, and if 
each of these averages falls above a pre-defined threshold, 
training ceases for that pattern. This ARB production is 
repeated until the stopping criteria are met. Once the 
criteria have been met, then the candidate memory cell 
can be selected. ( )

( )
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A candidate memory cell is selected from the set of ARBs 
based on its stimulation level and class, with the most 
stimulated ARB of the same class as the antigen being 
selected as the candidate. If this candidate cell has a 
higher stimulation than any memory cell for that class in 
the established memory set M, then it is added to M. 
Additionally, if the affinity of this candidate memory cell 
with the previous best memory cell is below the affinity 
threshold, then this established memory cell is removed 
from the population and replaced by the newly evolved 
memory cell, thus achieving population control. 
This process is then repeated for all antigenic patterns.  
Once learning has completed, the set of established 
memory cells M can be used for classification. The 
algorithm is presented below, in terms of immune 
processes employed. 

1. Initialization: Create a random base called the 
memory pool (M) and the ARB pool (P). 

2. Antigenic Presentation: for each antigenic 
pattern do:  
a) Clonal Expansion: 
For each element of M determine their affinity to 
the antigenic pattern, which resides in the same 
class. Select highest affinity memory cell (mc) 
and clone mc in proportion to its antigenic 
affinity to add to the set of ARBs (P)  
b) Affinity Maturation: 
Mutate each ARB descendant of this highest 
affinity mc.  Place each mutated ARB into P. 
c) Metadynamics of ARBs:  
Process each ARB through the resource 
allocation mechanism. This will result in some 
ARB death, and ultimately controls the 
population. Calculate the average stimulation for 
each ARB, and check for termination condition. 
d) Clonal Expansion and Affinity Maturation:  
Clone and mutate a randomly selected subset of 
the ARBs left in P based in proportion to their 
stimulation level.    
e) Cycle: 
While the average stimulation value of each 
ARB class group is less than a given stimulation 
threshold repeat from step 2.c. 
f) Metadynamics of Memory Cells:  
Select the highest affinity ARB of the same class 
as the antigen from the last antigenic interaction. 
If the affinity of this ARB with the antigenic 
pattern is better than that of the previously 
identified best memory cell mc then add the 
candidate (mc-candidate) to memory set M.  
Additionally, if the affinity of mc and mc-
candidate is below the affinity threshold, then 
remove mc from M. 

3. Cycle.  Repeat step 2 until all antigenic patterns 
have been presented. 

2.3 RESULTS AND DISCUSSION 
AIRS was tested on a number of benchmark data sets in 
order to assess the classification performance. This 
section will briefly highlight those results and discuss 
potential improvements for the algorithm, more details 
can be found in (Watkins and Boggess 2002a).  
Once a set of memory cells has been developed, the 
resultant cells can be used for classification. This is done 
through a k-nearest neighbor approach. Experiments were 
undertaken using a simple linearly separable data set, 
where classification accuracy of 98% was achieved using 
a k-value of 3. This seemed to bode well, and further 
experiments were undertaken using the Fisher Iris data 
set, Pima diabetes data, Ionosphere data and the Sonar 
data set, all obtained from the repository at the University 
of California at Irvine (Blake and Merz 1998). Table 2 
shows the performance of AIRS on these data sets, a full 
comparison table of AIRS and other techniques can be 
found in (Watkins and Boggess 2002a). 

Table 2: AIRS Classification Results on Benchmark Data 

IRIS IONOSPHERE DIABETES SONAR 

 
96.7 

 
94.9 

 
74.1 

 
84.0 

 
These results were obtained from averaging multiple runs 
of AIRS, typically consisting of three, or more, runs and 
five-way, or greater, cross validation. More specifically, 
for the Iris data set a five-fold cross validation scheme 
was employed with each result representing an average of 
three runs across these five divisions. To remain 
comparable to other experiments reported in the literature, 
the division between training and test sets of the 
Ionosphere data set as detailed in (Blake and Merz 1998) 
was maintained.  However, the results reported here still 
represent an average of three runs. For the Diabetes data 
set a ten-fold cross validation scheme was used, again 
with each of the 10 testing sets being disjoint from the 
others and results were averaged over three runs across 
these data sets.  Finally, the Sonar data set utilized the 
thirteen-way cross validation suggested in the literature 
(Blake and Merz 1998) and was averaged over ten runs to 
allow for more direct comparisons with other experiments 
reported in the literature.  During the experimentation, it 
was noted by the authors that varying system parameters 
such as number of seed cells varied performance on 
certain data sets, however, varying system resources (i.e., 
the numbers of resources an ARB could compete for) 
seemed to have little affect. A comparison was made 
between the performance of AIRS and other benchmark 
techniques, where AIRS seemed not to outperform 
specialist techniques, but on more general purpose 
algorithms, such as C4.5, it did outperform. 



Even though initial results from AIRS did look promising, 
it can be said there are a number of potential areas for 
simplification and improvement. There is clearly a need 
to understand exactly why and how AIRS behaves the 
way it does. This can be achieved through a rigorous 
analysis of the algorithm, examining the behavior of the 
ARB pool and memory set over time. To date, the focus 
has been primarily on the classification performance of 
AIRS. Indeed, the final chapter of (Watkins 2001) 
suggests that an investigation into the resource allocation 
mechanism would be a useful area of investigation. The 
majority of AIS techniques use the metaphor of somatic 
hypermutation or affinity proportional mutation. To date, 
AIRS does not employ this metaphor but instead uses a 
naïve random generation of mutations. 
 The remaining sections of this paper undertake these 
investigations and present a modified version of AIRS, 
which is more efficient in terms of ARB production, 
employs affinity proportional mutation and assess what, if 
any, difference this has made to the overall algorithm. 

3 A MORE EFFICIENT AIRS 
Motivated by the observations in (Watkins 2001), current 
work has focused on refining AIRS. This section details 
the observations that have been made through a thorough 
investigation into AIRS and how issues raised through 
these observations have been overcome. 

3.1 OBSERVATIONS 

3.1.1 The ARB Pool 
A very crude visualization1 was used to gain a better 
understanding of the development of the ARB pool. In 
AIRS there are 2 independent pools of cells, the memory 
cell pool and the ARB pool.  The initial formulation of 
AIRS uses the ARB pool to evolve a candidate memory 
cell of the same class as the training antigen, which can 
potentially enter the memory cell pool.  During this 
evolution, ARBs of a different class than the training 
antigen were also maintained in the ARB pool.  The 
stimulation of an ARB was based both on affinity to the 
antigen and class, where highly stimulated ARBs were 
those of the same class as the antigen and that were 
“close” to the antigen, or of a different class and "far" 
from the antigen.  However, the visualization revealed 
that during the process of evolving a candidate memory 
cell, there seems no need to maintain or evolve ARBs that 
are a different class than the training antigen.  The point 
of the interaction of the ARB pool with the antigenic 
material is really only in evolving a good potential 
memory cell, and this potential memory cell must be of 
the same class as the training antigen. When observing the 
visualization for a while, it is possible to notice that there 
is a process of convergence by ARBs of the same class to 
the training antigen.  Naturally, based on the reward 
                                                           
1 See http://www.cs.ukc.ac.uk/people/rpg/abw5/ARB_hundred.html 

scheme, ARBs of a different class are moving further 
away from the training antigen.  However, this process 
essentially must start over for the introduction of each 
new antigen, and, therefore, previously existing ARBs are 
fairly irrelevant.  Since there are 2 separate cell pools, 
with the true memory of the system only being 
maintained in the Memory Cell pool, maintaining any 
type of memory in the ARB pool is unnecessary. This 
change to the algorithm rather than being about resource 
allocation schemes as initially suggested in (Watkins 
2001) is really a simplification to the algorithm, which is 
seen as a positive step.  This simplification affects both 
memory usage and computational simplification, although 
this will not be discussed in this paper. 

3.1.2 Mutation of Cells 
Motivated by observing the success of other AIS work, as 
well as by some of the tendencies discussed in (Watkins 
2001) and (Watkins and Boggess 2002b), attention was 
paid to the way in which mutation occured within AIRS.  
In these two works, the authors notice that some of the 
evolved memory cells do not seem as high-quality of 
classifier cells as some of the others. Additionally, it was 
observed that there seemed to be some redundancy in the 
memory cells that were produced. In (De Castro and Von 
Zuben 2000a) and other AIS work, mutation within an 
antibody or B-Cell is based on its affinity, with higher 
affinity cells being mutated less than lower affinity cells. 
These other AIS works have used this method of somatic 
hypermutation to a good degree of success. It was thought 
that embedding some of this approach in AIRS might 
result in higher quality, less redundant, memory cells. 
This approach was therefore adopted within AIRS.  

3.2 AIRS: WHAT IS NEW? 
For the remainder of this section changes that have been 
made to the AIRS algorithm are described. There then 
follows empirical results from the new formulation and 
discuss the implications of these results. 

3.2.1 Memory Cell Evolution 
In the newly formulated version of AIRS, candidate 
memory cell evolution is based only on ARBs of the same 
class as the training antigen.  This means that ARBs in the 
ARB pool are no longer permitted to mutate class.  
Therefore, the ARB pool will only consist of ARBs that 
are of the same class as the training antigen.  At the end of 
each antigenic presentation cycle, the pool can be either 
be cleared out, or the ARBs can stay in the pool. If the 
pool is not cleared out then it will contain ARBs of all 
potential classes. The algorithm is only reinforcing the 
class of the antigenic pattern, and therefore, all ARBs that 
are in the pool at the end of the antigenic cycle that are 
not of the same class as the antigenic pattern will be 
removed through the metadynamic process, as they are no 
longer rewarded with any resources.   This is in contrast 
to the original formulation of AIRS in which the 



allocation of resources, and thus cellular reinforcement, 
was based on a stimulation value that was calculated as in 
Equation 1 (section 2.2).  In that original version both 
ARBs “near” the antigen and of the same class as the 
antigen were rewarded and ARBS “far” from the antigen 
and of a different class than the antigen were rewarded.  
Also, ARBs were allowed to mutate their class values 
(mutate in this case means switching classes).  In the 
newly proposed version of AIRS, only ARBs of the same 
class are rewarded and mutation of the class value is no 
longer permitted. 
Based on this new formulation, the only user parameter 
changes that might need to be made is that the stimulation 
threshold could potentially need to be raised.  Recall, that 
the stimulation threshold was used as a stopping criterion 
for training the ARB pool on an antigen.  In order to stop 
training on an antigen the average normalized stimulation 
level had to exceed the stimulation threshold for each 
class group of ARBs. That is, in a 2-class problem, for 
example, the average normalized stimulation level of all 
class 0 ARBs had to be above the stimulation threshold, 
and the average normalized stimulation level of all class 1 
ARBs has to be above the stimulation threshold.  It was 
possible, and frequently the case in fact, that the average 
normalized stimulation level for the ARBs of the same 
class as the training antigen reached the stimulation 
threshold before the average normalized stimulation level 
of ARBs in different classes from the antigen.  What this 
did, in effect, was allow for the evolution of even higher 
stimulated ARBs of the same class while they were 
waiting for the other classes to reach the stimulation 
threshold.  By taking out these extra cycles of evolution 
through no longer worrying with ARBs of different 
classes, it is possible that the ARBs will not have 
converged "as much" as in the previous formulation.  This 
can be overcome by raising the stimulation threshold and 
thus requiring a greater level of convergence. 

3.2.2 Somatic Hypermutation 
To explore the role of mutation on the quality of the 
memory cells evolved, the mutation routine was modified 
so that the amount of mutation allowed by a given gene in 
a given cell is dictated by its stimulation value.  
Specifically, the higher the normalized stimulation value, 
the smaller the range of mutation allowed.  Essentially, 
the range of mutation for a given gene = 1.0 - the 
normalized stimulation value of the cell. Mutation is then 
controlled over this range with the original gene value 
being placed at the center of the range.  This, in a sense, 
allows for tight exploration of the space around high 
quality cells, but allows lower quality cells more freedom 
to explore widely.  In this way, both local refinement and 
diversification through exploration are achieved. 

3.3 THE AIRS V2 ALGORITHM 
The changes made to the AIRS algorithm are small, but 
end up having an interesting impact on both the simplicity 
of implementation and on the quality of results.  Section 4 

will offer more discussion by way of comparison.  For 
now, the changes to the original AIRS presented in 
section 2.2 will be discussed. These can be identified as 
follows: 

1. Only the Memory Cell pool is seeded during 
initialization rather than both the MC pool (M) 
and the ARB pool (P).  Since we are no longer 
concerned about maintaining memory or class 
diversity within P it is no longer necessary to 
initialize P from the training data or from 
examples of multiple classes.   

2. During the clonal expansion from the matching 
memory cell used to populate P, the newly 
created ARBs are no longer allowed to mutate 
class.  Again, maintaining class diversity in P is 
not necessary.   

3. Resources are only allocated to ARBs of the 
same class as the antigen and are allocated in 
proportion to the inverse of an ARB’s affinity to 
the antigen.   

4. During affinity maturation (mutation), a cell’s 
stimulation level is taken into account.  Each 
individual gene is only allowed to change over a 
finite range.  This range is centered with the 
gene’s pre-mutation value and has a width the 
size of the difference of 1.0 and the cell’s 
stimulation value.  In this way the mutated 
offspring of highly stimulated cells (those whose 
stimulation value is closer to 1.0) are only 
allowed to explore a very tight neighborhood 
around the original cell, while less stimulated 
cells are allowed a wider range of exploration. 
(It should be noted that during initialization all 
gene values are normalized so that the Euclidean 
distance between any two cells is always within 
one.  During this normalization, the values to 
transform a given gene to within the range of 0 
and 1 are discovered, as well.  This allows for 
this new mutation routine to take place in a 
normalized space where each gene is in the 
range of 0 and 1.) 

5. The training stopping criterion no longer takes 
into account the stimulation value of ARBs in 
all classes, but now only accounts for the 
stimulation value of the ARBs of the same class 
as the antigen.  In the new formulation of AIRS 
it is still possible to have ARBs in P of different 
classes if the implementation does not clear the 
ARB pool after each antigenic pattern.  
However, this will not affect the stopping 
criterion since the changes to the algorithm now 
only require that the average stimulation value 
of the ARBs of the same class as the antigen be 
above the user-supplied stimulation threshold. 



3.4 RESULTS AND DISCUSSION 
To allow for comparison between the two versions of the 
algorithm, the same experiments were performed on the 
new formulation of AIRS (AIRS2).  Section 4 will 
provide a more thorough comparative discussion, but for 
now, results of AIRS2 on the four, previously discussed, 
benchmark sets are presented in Table 3.   

Table 3: AIRS2 Classification Results on Benchmark 
Data 

IRIS IONOSPHERE DIABETES SONAR 

 
96.0 

 
95.6 

 
74.2 

 
84.9 

 
These results were obtained by following the same 
methodology as the original results reported in section 2.3 
which is elaborated upon in (Watkins 2001) and (Watkins 
and Boggess 2002a).  Again, we note that these results are 
competitive with other classification techniques discussed 
in the literature, such as C4.5, CART, and Multi-Layer 
Perceptrons. 

4 COMPARATIVE ANALYSIS 
This section briefly touches on some comparisons 
between the original version of AIRS presented in 
discussed in section 2 (AIRS1) and the revisions to this 
algorithm presented in section 3 (AIRS2).  The focus of 
this discussion will be on two of the more important 
features of the AIRS algorithms: classification accuracy 
and data reduction. 

4.1 CLASSIFICATION ACCURACY 
The success of AIRS1 as a classifier (cf, (Watkins and 
Boggess 2002a)) makes it important to assess any 
potential changes to the algorithm in light of test set 
classification accuracy.  To aid in this task, Table 4 
presents the best average test set accuracies, along with 
the standard deviations, achieved by both versions of 
AIRS on the four benchmark data sets. 

Table 4: Comparative Average Test Set Accuracies 

 AIRS1: 
Accuracy  

AIRS2: 
Accuracy 

Iris 96.7 (3.1) 96.0 (1.9) 

Ionosphere 94.9 (0.8) 95.6 (1.7) 

Diabetes 74.1 (4.4) 74.2 (4.4) 

Sonar 84.0  (9.6) 84.9 (9.1) 

 
It can be noted that the revisions to AIRS presented in 
section 3 do not require a sacrifice in classification 
performance of the system.  In fact, for 3 of the 4 data sets 

we see a slight improvement in the accuracy; however, 
these differences are not statistically significant.  What is 
important to note is that the changes introduce no 
fundamental differences in classification accuracy of the 
system. 

4.2 DATA REDUCTION 
From the previous subsection it can be seen that the 
changes introduced to AIRS offer no real difference in 
classification accuracy, so the question arises: why 
bother?  Why introduce these changes to a perfectly 
reasonably performing classification algorithm?  The 
answer lies in the data reduction capabilities of AIRS. 
In (Watkins 2001) and (Watkins and Boggess 2002b), the 
authors discuss that aside from competitive accuracies 
another intriguing feature of the AIRS classification 
system is its ability to reduce the number of data points 
needed to characterize a given class of data from the 
original training data to the evolved set of memory cells.  
Given the volumes of data involved with many real-world 
data sets of interest, any technique that can reduce this 
volume while retaining the salient features of the data set 
is useful.  Additionally, it is this collection of memory 
cells that are the primary classifying agents in the evolved 
system.  Since classification is, currently, performed in a 
k-nearest neighbor approach, whose classification time is 
dependent upon the number of data points used for 
classifying a previously unseen data item, any reduction 
in the overall number of evolved memory cells is also 
useful for the algorithm. 
Table 5 presents the average size of the evolved set of 
memory cells and the amount of data reduction this 
represents in terms of population size and percentage 
reduction, along with standard deviations, for each 
version of the algorithm on the four benchmark data sets.  
The original training set size is also presented for 
comparison.  There are two points of interest: 

1. Both versions of the algorithm exhibit data 
reduction, and 

2. AIRS2 tends to exhibit greater data reduction 
than AIRS1. 

Table 5:  Comparison of the Average Size of the Evolved 
Memory Cell Pool 

 Training 
Set Size 

AIRS1: 
Memory 
Cells 

AIRS2: 
Memory 
Cells 

Iris 120 42.1/65% 
(3.0) 

30.9/74% 
(4.1) 

Ionosphere 200 140.7/30% 
(8.1) 

96.3/52% 
(5.5) 

Diabetes 691 470.4/32% 
(9.1) 

273.4/60% 
(20.0) 

Sonar 192 144.6/25% 
(3 7)

177.7/7% 
(4 5)



(3.7) (4.5) 

 
This second point is the more important for our current 
discussion.  As mentioned in sections 3.1.2 and 3.2.2, one 
of the goals of the revision of the AIRS algorithm was to 
see if employing somatic hypermutation through a 
method more in keeping with other research in the AIS 
field would increase the efficiency of the algorithm.  The 
current measure of efficiency under concern is the amount 
of data needed to represent the original training set to 
achieve accurate classifications.  We can see from Table 5 
that, in general, AIRS2 was able to achieve the 
comparable accuracy presented in section 4.1 with greater 
efficiency.  In fact for some of the data sets, most notably 
Ionosphere and Diabetes, the degree of data reduction is 
greatly increased (from 30% to 52% for Ionosphere data 
and from 32% to 60% for the diabetes data set).  
Interestingly, for the most difficult classification task, the 
Sonar data set, the degree of data reduction is not 
increased.  While this was not the general trend on this 
data set (data not presented), it does possibly point to 
some limitations in the current version of AIRS.  Overall, 
however, it seems reasonable to claim that the revisions to 
AIRS provide greater data reduction, and hence greater 
efficiency, without sacrificing accuracy. 

4.3 A WORD ABOUT SIMPLICITY 
While the focus has not been on algorithmic complexity 
analysis of the two versions of AIRS for this current 
paper, it would be remiss not to make a brief mention 
concerning the simplifying effects of the revision to 
AIRS.  As mentioned in section 3.1, the reformulation of 
AIRS was chiefly motivated by some basic observations 
about the workings of the system.  One observation was 
that the original version of AIRS maintained 
representation of too many cells for its required task.  
This led to the elimination of maintaining multiple classes 
of cells in the ARB pool or of retaining cells in the ARB 
pool at all.  This has the simplifying effect of reducing the 
memory necessary to run the system successfully.  A 
second observation concerning the quality of the evolved 
memory cells led to the investigation of the mutation 
mechanisms employed in the original algorithm.  By 
adopting an approach to mutation proven to be successful 
in other AIS, it has been possible to increase the quality of 
the evolved memory cells that is evidenced by the 
increased data reduction without a decrease in 
classification accuracy. Both of these overarching 
changes (ARB pool representation and the mutation 
mechanisms used) have exhibited a simplifying effect on 
the classification system as a whole. 

5 CONCLUSIONS AND FUTURE WORK 
This paper has focused on a supervised learning system 
based on immunological principles.  The Artificial 
Immune Recognition System (AIRS) introduced in 
(Watkins 2001) exhibited initial success as a classification 

algorithm.  However, as with any initial system, there 
were some revisions and refinements that could be made 
to AIRS that would decrease the complexity of the 
system.  This paper has presented investigations for two 
of these revisions. 
It was shown that the internal data representation of the 
original version of AIRS was overcomplicated.  By 
simplifying the evolutionary process, it was possible to 
decrease this complexity whilst still maintaining 
accuracy.  It was also shown that the use of affinity aware 
mechanisms of somatic hypermutation, as adopted 
throughout the AIS community, led to higher quality 
memory cells in AIRS and thus greater data reduction and 
faster classification of test data items.   
Both of these revisions were the result of careful 
observation of the behavior of the original algorithm.  In 
this respect, it can be said that this paper is also about the 
importance of taking the steps to investigate the behavior 
of a system even if it is performing in a successful 
manner.  This paper has demonstrated that such an 
investigation is fruitful in simplifying the workings 
without sacrificing the performance of the system. 
There are many avenues that can be explored with this 
work. One is the analogy of this work with reinforcement 
learning strategies, it could possibly be argued that AIRS 
is a reinforcement learning algorithm, when one considers 
certain mechanism within the immune system (Bersini 
and Varela 1994); this warrants further investigation. 
Additionally, the role of parallel and distributed 
processing could be examined, in order to allow for 
dealing with larger scale problems. Work has already 
begun on applying AIRS to immunological data, 
attempting to predict the binding of receptors and in effect 
trying to solve an immunological problem with an 
artificial immune system. 
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Abstract 
 

The dynamic clonal selection algorithm 
(dynamiCS) was created to tackle the difficulties 
of anomaly detection in continuously changing 
environments (Kim and Bentley, 2002a). This 
algorithm was extended in a sister paper (Kim 
and Bentley, 2002b), so that memory detectors 
that are no longer valid are automatically 
deleted. Here we describe a further extension to 
the system: the use of hypermutation on deleted 
memory detectors to produce, in effect, a “virtual 
gene library” which seeds the immature detector 
population. 

1 INTRODUCTION 

When using an Artificial Immune System (AIS) in a real 
environment (e.g., monitoring network traffic), normal or 
self behaviours can change after a certain period. In 
addition, the system may only see a small subset of self 
antigens at any one time.  In order for our AIS to be able 
to deal with such an environment, a dynamic clonal 
selection algorithm (DynamiCS) was introduced in 
previous work (Kim and Bentley, 2002a). The results 
described there showed that DynamiCS could 
incrementally learn the globally converged distributions 
even though only one subset distribution was given at 
each generation. This feature was achieved by employing 
three important parameters: tolerisation period of an 
immature detector (T), activation threshold of a mature 
detector (A) and the life span of a mature detector. 
However, the original DynamiCS could not learn new 
self-antigens when learned self and non-self behaviours 
suddenly altered due to legal self change. This resulted in 
high false positive (FP) rates when new antigens were 
monitored by DynamiCS, although it produced high true 
positive (TP) rates.  

A sister paper to this describes a further extension of 
DynamiCS, which reduces FP rates increased by memory 
detectors (Kim and Bentley 2002b). The extended 
DynamiCS handles generated memory detectors based on 
their detection results. The original DynamiCS preserved 
memory detectors for an infinite lifespan. In contrast, the 
extended DynamiCS kills memory detectors if they show 

poor self-tolerance to new antigens (Kim and Bentley 
2002b). This extended system was tested to determine 
whether surviving memory detectors no longer cause 
seriously high FP error rates or not. From this test, it was 
analysed to see whether any other problems occur as a 
consequence of killing memory detectors. The analysis 
showed that the extended DynamiCS requires a larger 
amount of co-stimulation if it yielded high TP rates. 

This analysis led to the work described in this paper: the 
addition of hypermutation to the extended DynamiCS, to 
– in effect – evolve a gene library of the AIS. This 
additional extension is designed to fine-tune generated 
memory detectors so that the system obtains higher TP 
rates without increasing the amount of co-stimulation. 
Here, the new extension is tested to determine whether it 
gains high TP rates without increasing the amount of co-
stimulation as the result of gene library evolution. The test 
results are then analysed to see how hypermutation leads 
to such a gene library evolution effect, and thus whether it 
improves the overall system performance. Finally, the 
novel features of DynamiCS studied in this work are 
discussed in accordance with a comparison to the most 
similar AIS developed by (Hofmeyr, 1999; Hofmeyr and 
Forest, 2000).  

2 DYNAMIC CLONAL SELECTION 
(DynamiCS) ALGORITHM 

The new AIS introduced in previous work (Kim and 
Bentley, 2002a) follows the basic concept of the AIS 
proposed by Hofmeyr (1999). The adaptability of 
Hofmeyr’s AIS was achieved via co-ordinated dynamics 
of three different detector populations: immature, mature, 
and memory detector populations. In order to fully 
comprehend the co-ordinated dynamics of these three 
detector populations in terms of AIS adaptability, we 
introduced an artificial immune algorithm, called the 
dynamic clonal selection algorithm (DynamiCS). 
Although Hofmeyr proposed various new features in 
order to effect great adaptability and distributed detection, 
DynamiCS attempts to distill only the crucial components 
that yield adaptability to the system (and reduce the 
number of system parameters to ensure the algorithm is 
usable). The following pseudo code provides an overview 
of the extended DynamiCS. 



Initialise Dynamic Clonal Selection Algorithm 
Create an initial immature detector population with random detectors; 
 
Generation_Number = 1; 
Do  
{ If (Generation_Number = N) then Select a new antigen cluster. 
 Select 80% of self and non-self antigens from chosen antigen cluster;
  
 Reset Parameters 
       Generation_Number++;    Memory Detector Age++; 
       Mature Detector Age++;   Immature Detector Age++; 
                                          
 Monitor Antigens 
 {   Monitor Antigens by Memory Detectors      
        Co-stimulation: does the memory detector detect a non-self 
        antigen or does it detect a self antigen? 
        Kill memory detectors that detect self antigens. 
           
     Monitor Antigens by Mature Detectors    
         Check whether any mature detector detects any non-self antigen; 
         Check whether any mature detector detects any self antigen; 
         Create new memory detectors; 
         Old mature detectors are killed; 
       
      Monitor Antigens by Immature Detectors 
          Check whether any immature detector detects any self antigen; 
          Delete any immature detector matching any self antigen;  
          Create new mature detectors;       
 } 
 
 If (immature detector population size + 
      mature detector population size  
     < non-memory detector pop size) 
 {  Do 
     {  Generate a random detector; 
          Add a random detector to an immature detector population; 
     }  Until  (immature detector population size +  
                     mature detector population size =  
                     non-memory detector pop size); 
 } 
} While (generation Number < max Generation) 

Full details of this algorithm are given in (Kim and 
Bentley, 2002a and b). 

All experiments used the Wisconsin breast cancer data 
set. The cancer data has two classes, ‘Malignant’ and 
‘Benign’. The system treated ‘Malignant’ as non-self and 
‘Benign’ as self. In order to be sure of providing antigens 
of novel distributions, self and non-self antigen data was 
clustered into several groups: the 240 ‘Malignant’ 
examples were divided into three clusters of 45, 117 and 
78 examples, and the 460 ‘Benign’ examples were 
grouped into three clusters of 42, 355 and 63 examples. 
The Expectation Maximization (EM) clustering algorithm 
was applied to cluster antigen data. The EM algorithm is 
widely-used as the basis for various unsupervised learning 
algorithms (Mitchell, 1997). 80% of the self and non-self 
antigen data belonging to each cluster were randomly 
selected for N generations. Therefore, DynamiCS was 
provided with different antigen data at each generation 
and the distributions of these data changed at every N 
generations. The costimulation mechanism involving a 
security officer was implemented by simply increasing 
the match count only when a detector detects non-self 
antigens. 

3 BACKGROUND: GENE LIBRARY 
EVOLUTION AND HYPERMUTATION  

A problem found in previous experimental results is that 
the extended DynamiCS required a large number of 
memory detector co-stimulations in order to obtain 
satisfactory TP rates (Kim and Bentley 2002b). This 
problem could originate from the simplification of the 
developed AIS, which did not adopt all the evolution 
processes engaged in the human immune system. So far 
negative selection and clonal selection have already been 
employed in DynamiCS and their effects were analysed. 
However, gene library evolution has not yet been adopted 
in DynamiCS.  

The analyses of previous experimental results explained 
that the extended DynamiCS with high activation 
threshold of a mature detector (A) provided a smaller 
number of memory detectors and thus it required less 
involvement from human security officers. However, it 
missed a larger number of non-self antigens. In addition, 
they have shown that the generation of more memory 
detectors by decreasing the A can increase TP rates. This 
was mainly because all the new detectors were generated 
randomly and thus generated detectors were randomly 
scattered in the non-self antigen space. In other words, 
although existing memory detectors detected a sufficient 
number of non-self antigens to activate, they can be 
further finely tuned to match more non-self antigens. 

If new detectors are generated by taking some feedback 
from previous detection results into account, then a new 
detector can be improved to match a larger number of 
non-self antigens. This idea can be implemented by a 
model of gene library evolution using hypermutation, as 
will be described later. Bearing in mind the effect of gene 
library evolution, this section addresses how the human 
immune system evolves over generations, and how 
existing AIS’s adopt these mechanisms.  

3.1 GENE LIBRARY EVOLUTION BY HUMAN 
IMMUNE SYSTEMS  

The human immune system learns dynamically changing 
antigens via clonal selection. To be more precise, 
activating antibodies clone themselves and proliferate 
across different parts of the body. Cloning antibodies 
trigger a somatic hypermutation process. Somatic 
hypermuatation mutates a random portion of genes in 
antibody clones. Mutated offspring of activating 
antibodies are expected to have wider variations in their 
antigen-matching genes. Mutants are quickly 
disseminated across the body and start detecting other 
types of antibodies. During this process, mutants and 
existing antibodies compete to detect more antigens and 
their antigen detection results determine their affinities. 
The antibodies with higher affinities survive longer and 
clone themselves more. It is known that clonal selection 
with hypermutation is essential for the human immune 
system to permanently learn newly appearing antigens 
(Paul, 1993; Sompayrac, 1999).  



Somatic hypermutation mechanism is distinguished from 
mutation taking place in a germ line level1. While a germ 
line level of mutation occurs typically at a low rate, 
mutation applied on activating antibody clones operates at 
a much higher rate. Another different feature of somatic 
hypermutation is that it is applied only on a somatic level. 
It is known that the mutated genes of antibody clones 
cannot be directly written back to the DNA (or a gene 
library) of an egg or sperm cell. As a result, the genes of 
surviving antibody mutants are not passed onto the next 
generation of the immune system (Paul, 1993; 
Sompayrac, 1999). 

However, it is also known that the learning results via 
clonal selection with hypermutation during a lifetime 
indirectly lead the evolution of a gene library in the 
human immune system over generations. Although the 
genes of useful antibody mutants are not directly 
inherited, individuals capable of generating more useful 
mutants are more likely to survive against various types 
of pathogens. Thus, the gene libraries of these individuals 
are passed over generations and offspring having these 
inherited gene libraries are more likely to have an 
immune system with a good capability of producing 
useful mutants. This effect was proposed for the first time 
by Mark Baldwin in 1896 and named as the Baldwin 
effect (Baldwin, 1896). 

While it has been reported that the learning of the human 
immune system during a lifetime indirectly determines 
the direction of gene library evolution (Hightower et al., 
1996; Perelson et al., 1996), other work by Hightower et 
al. (1995) investigated what determines the direction of 
gene library evolution (i.e. where the selection pressure of 
gene library evolution is aimed). This question is about 
what the evolution strategy of the human immune system 
is when the goal is that a dynamically changing vast 
number of antigens should be covered by a much smaller 
number of antibodies. This work showed that the binary 
antibodies of AIS evolve toward a balancing point 
between maximum coverage of the antigen space and the 
least overlapping coverage of antibody space.  

Oprea and Forrest (1998; 1999) advanced further the 
work by Hightower et al. (1995) and studied the diversity 
required of a gene library in the human immune system, 
and the role of gene library evolution. This work verified 
that antibody evolution gets slower and evolves to cover 
more random antigen niches when the pathogen size 
(exposed to antibodies) gets smaller. In this case, the 
immune system does not let the gene library evolve 
toward existing antigen specific niches. Instead, it evolves 
toward covering a coarse-grained antigen space. This 
understanding was drawn from the observation that the 
survival probability of the organism (the average fitness 
of immune systems) increased logarithmically with the 
size of its germ line-encoded antibody repertoire (the 

                                                           
1 Germ line manipulation requires the altering of the DNA in the 
reproductive cells which make the fertilized egg, so that the genetic 
changes will be copied into every cell of the future adult, including his 
or her reproductive cells.  

number of antibody genes in the library).  This result 
clearly illustrated that the gene library diversity is not 
maintained for specific recognition of individual 
pathogens, but rather it evolved to cover a coarse-gain 
encoding of the regions of the pathogen universe that the 
species has encountered.  A later study by the same author 
(Oprea, 1999b) investigated the role of hypermutation by 
investigating its mutating targets. Her experiments 
showed that hypermutation usually targets to mutate the 
antigen-binding regions of a gene library and the mutation 
results often led fine-tuning of antigen-binding parts. 

In summary, the gene library evolves by getting indirect 
feedback from what the human immune system has 
learned during its lifetime. Germ line diversity that is 
obtained through gene library evolution is somewhat 
directed toward covering a coarse-grain antigen space, 
and learning through hypermuation leads the immune 
system to fine-tune its detection of the existing antigens. 

3.2 GENE LIBRARY EVOLUTION BY 
ARTIFICIAL IMMUNE SYSTEMS 

There are two methods employed by the currently 
available AIS’s in order to evolve their gene libraries. The 
first approach directs gene library evolution through the 
Baldwin effect and the second approach allows provision 
of direct feedback from learning results to a gene library. 
The first approach initially builds a gene library that is a 
collection of previously known antibody genes. This 
initial gene library provides a certain degree of antigen 
diversity but it obtains a satisfactory level of antigen 
diversity through gene expression and learning using 
hypermutation. Although this approach does not directly 
alter the genes in the gene library, it still allows the gene 
library to evolve via the Baldwin effect. The second 
approach often does not distinguish a gene library from an 
antibody population. It treats a currently existing antibody 
population as a gene library and thus concentrates on 
antibody population evolution. As the result, this 
approach ignores the difference between lifetime learning 
and evolution over generations, but it emphasises more 
the study of whether hypermutation accelerates the degree 
of antibody population evolution, and controls the 
evolution direction. These two different approaches have 
been implemented in various ways depending on the 
adopted AIS model. 

One popular group of AIS is the extension of a 
conventional genetic algorithm. Researchers added 
several immune features to GA in order to complement 
some weaknesses found from a conventional GA 
(Dasgupta et al., 1999a; Hart and Ross, 1999; Gaspar and 
Collard, 1999; Hajela and Yoo, 1999; Potter and De Jong, 
1998; Nikolaev et al., 1999; Michaud et al., 2001). The 
static clonal selection algorithm introduced in previous 
work (Kim and Bentley, 2001) belongs to this group. 
Among these systems, (Hart and Ross, 1999) and 
(Michaud et al., 2001) used a gene library that is separate 
from the antibody population. The gene libraries used in 
these work are collections of some partial solutions and 



thus new antibody solutions were generated by 
concatenating these partial solutions. While Hart and Ross 
(1999) generated new antibodies using this method 
exclusively (Michaud et al., 2001) generated only the 
initial antibody population using a gene library and the 
antibody population was evolved using a conventional 
GA. However, neither investigated whether these 
approaches have additional benefits compared with others 
that did not differentiate the antibody population from the 
gene library. These other methods typically generated 
new antibodies using crossover and mutation operators of 
GA and antibodies in the population were continuously 
replaced with evolved new ones (Dasgupta et al., 1999a; 
Gaspar and Collard, 1999; Hajela and Yoo, 1999; Potter 
and De Jong, 1998; Nikolaev et al., 1999). From these 
latter approaches, apart from (Gaspar and Collard, 1999), 
none of these systems employed hypermutation, which 
might provide fine-tuned diversity of the antibody 
population that can cover currently existing antigens. The 
AIS developed in (Gaspar and Collard, 1999) cloned the 
best n % of antibodies and mutated them with a high rate. 
From these mutated antibodies, only ones having 
improved fitness values were entered to the antibody 
population for selection. They did not study the effect of 
hypermutation in terms of antibody evolution. 

Another popular type of AIS, which use network theory, 
usually apply a mutation operator to n % of best 
antibodies in an antibody network, and mutated antibodies 
are tested whether it is added to an existing immune 
network (Timmis, 2001; Fukuda et al., 1998; Watanabe et 
al., 1998; Ishida, 1996; Lee et al., 1999). From these 
AIS’s, Timmis (2001) and Fukuda et al. (1998) did not 
use a gene library to create initial antibody nodes while 
others (Fukuda et al., 1998; Watanabe et al., 1998; Lee et 
al., 1999; Ishida, 1996) initialised antibody nodes with 
already known local solutions, which can be regarded as a 
gene library. The systems using a gene library typically 
developed an artificial immune network in order to find a 
global solution under a dynamically changing 
environment by finding an optimal combination of 
existing local solutions as a global solution. Among these 
systems, Timmis (2001), Fukuda et al. (1998), and Lee et 
al. (1999) applied a high rate of mutation when cloning 
new antibodies, and only Timmis (2001) investigated the 
different effects according to different rates of mutation. 
In this work, he has shown that the network connectivity 
declined as the mutation rate got higher and thus 
contributes to increasing the diversity of the antibody 
network.  

Other work by (De Castro and Von Zuben, 2000; De 
Castro and Von Zuben, 2001) developed an AIS by 
mimicking exactly the clonal selection process without 
differentiating the gene library and the antibody 
population. When this system cloned new antibodies, it 
applied various mutation rates to each antibody depending 
on its affinity. It assigned smaller mutation rates when 
affinity is higher with the intention of increasing the 
diversity by correcting poorly performing antibodies. 
However, this work neither investigated the effect of 

mutation on the antibody population evolution, nor the 
need to have a separate gene library to accelerate antibody 
evolution. 

4 EXTENDED DYNAMICS: 
SIMULATING GENE LIBRARY 
EVOLUTION USING HYPERMUTATION  

4.1 ALGORITHM DESCRIPTION 

The problem found from previous experiment results was 
that the extended DynamiCS obtained high TP rates only 
when it produced a large amount of memory detector co-
stimulation. In contrast, for the case having a smaller 
amount of memory detector co-stimulation, extended 
DynamiCS struggled to show high TP rates. However, the 
related work introduced in the previous section suggests 
that applying hypermutation to immune cells for cloning 
is a necessary mechanism to fine-tune current immune 
cells to target non-self antigen binding regions. As a way 
of resolving the problem of excessive co-stimulation, 
extended DynamiCS applies this mechanism.  

          If (immature detector population size + 
                mature detector population size  
                  < non-memory detector pop size) 
          { 
                   Do 
                  {  if ( number of deleted memory detectors > 0 && 
                             mutation rate != 0 ) 
                      {  Select a deleted memory detector randomly and 
                            create its mutant 
                           Add this mutant to immature detector population. 
                      }  else 
                          Generate a random detector and 
                          add it to an immature detector population 
 
                   } Until  (immature detector population size + 
                                 mature detector population size =  
                                 non-memory detector pop size) 
           } 

Figure 1. Modified Pseudo Code for Extended DynamiCS 

It can be interpreted that low TP rates obtained by the 
extended DynamiCS were originated from coarse-grained 
non-self antigen niche coverage of activating detectors. 
Thus, if these detectors were more fine-tuned to cover 
existing non-self antigens, the extended DynamiCS could 
have higher TP rates without necessarily having a large 
amount of activating detectors. In order to investigate the 
effect of hypermutation only, the extended DynamiCS 
does not create a separate gene library (i.e., a collection of 
useful detector genes). Instead, it continues to maintain 
three detector populations: immature, mature and memory 
detector populations and treats a portion of the memory 
detector population as a gene library. In order to let 
memory detectors evolve towards existing non-self 
antigens without binding self antigens, the extended 
DynamiCS clones memory detectors by applying a 
hypermutation operator on deleted memory detectors. 
These mutants of deleted memory detectors are added to 
an immature detector population for the negative selection 
test. Immature detectors in DynamiCS have always been 



randomly generated for negative selection. Now extended 
DynamiCS produces immature detectors by mutants of 
deleted memory detectors, if there are memory detectors 
available or by random otherwise. Hence, this further 
extension of DynamiCS employs a “virtual gene library” 
dynamically made from mutations of deleted memory 
detectors. Through the various selection mechanisms and 
hypermutation operator, the seed immature detectors 
produced by the virtual gene library evolve over time, just 
as the immature, mature and memory detectors evolve in 
their separate populations. This modification is 
summarised in the pseudo code shown in figure 1. 

While the mutation rate used in GAs is very low (around 
0.01~0.05%), extended DynamiCS employs much higher 
rates (0.1% and 0.2%) for hypermutation. This also 
follows the mutation strategy of the human immune 
system. The human immune system deliberately uses a 
higher mutation rate in order to maintain its diversity 
(Paul, 1993). Similarly, adopting a higher rate of mutation 
is expected to lead detectors to explore new non-self 
antigen niches and thus escape from existing self antigen 
niches. The following sections will study how an 
unusually larger mutation rate affects the performance of 
extended DynamiCS. 

It also should be noted that hypermutation is applied to 
deleted memory detectors, not to existing memory 
detectors. This part is a slight variation of the human 
immune system. The human immune system clones 
successful memory detectors and spreads them to other 
lymph nodes distributed in the body. These new cloned 
detectors are expected to detect associative non-self 
antigens that share some non-self antigen patterns 
detected by previously detectors but do not necessarily 
have the same non-self antigen patterns with the previous 
detectors. In other words, cloned detectors are expected to 
detect new antigens belonging to a new antigen cluster as 
soon as possible. During this process, the self-tolerance of 
new mutants are maintained by the helper T-cells. 
However, extended DynamiCS does not have a separate 
helper T-detector population to confirm self-tolerance of 
newly cloned detectors. Therefore, extended DynamiCS 
uses hypermutation in a way to generate new detectors 
more tuned to target non-self antigen detection, and at the 
same time still effectively avoid self antigen detection. 
Memory detectors are deleted when they match self 
antigens of the current antigen cluster, but the fact that 
they managed to become memory detectors at all implies 
that they hold valid information about non-self antigens in 
previous clusters. By mutating these and reusing them in 
the form of a virtual gene library to seed new immature 
detectors, this evolved information is being retained and 
fine-tuned by the system.  

4.2 EXPERIMENT RESULTS 

Two series of experiments were performed in order to 
investigate the effects of hypermutation on true positive 
(TP) and false-positive (FP) rates by the extended 
DynamiCS introduced here. These experiments had the 

same values of given parameters that were used in the 
experiments of previous work (Kim and Bentley 2002b), 
which are summarised in table 1. 

Table 1. Parameter values used for DynamiCS experiments 

The first series of experiments was performed by varying 
A values with mutation rate = 0.1 and the second series 
was performed with mutation rate = 0.2. Figure 2 and 3 
show the average TP and FP rates of each series of 
experiments after running them five times.  The X-axes of 
these graphs represent the number of generations and the 
Y-axes indicate detection rates.  Each graph has two lines, 
one displaying a True Positive (TP) rate and another 
showing a False Positive (FP) rate. The grid lines on the 
X-axis were placed at every N generations for N = 30. 
Each experiment was also run for maximum 2000 
generations.  

Table 2. Average numbers of surviving, generated and 
deleted memory detectors during 2000 generations, and 
average number of memory detector costimulations per 
generation for the extended DynamiCS with mutation rate = 
0.1. The mean values are followed by the variances in 
parentheses.  

Extended DynamiCS with Mutation Rate = 0.1 

 Surviving 
Memory 
Detectors 

Generated 
Memory 
Detectors 

Deleted 
Memory 
Detectors 

Memory 
Detector  Co-
stimulation 

per generation 

A = 5 45.5 (21.67) 535.5 (8869.67) 490 (8448.67) 40.48 (14.35) 

A=10 37 (4) 376 (1444.67) 339 (1456.67) 31.39 (1.43) 

A=20 32.5 (7) 259.5 (176.33) 227 (172) 28.08 (2.99) 

A=40 27.5 (24.5) 203.5 (14964.5) 176 (13778) 22.56 (6.66) 

Table 3. Average numbers of surviving, generated and 
deleted memory detectors during 2000 generations, and the 
average number of memory detector costimulations per 
generation for the extended DynamiCS with mutation rate = 
0.2. The values in parentheses are variances. 

Extended DynamiCS with Mutation Rate = 0.2 

 Surviving 
Memory 
Detectors 

Generated 
Memory 
Detectors 

Deleted 
Memory 
Detectors 

Memory Detecor 
Co-stimulation 
per generation 

A = 5 44.75 (8.25) 264.5 (94.33) 219.75 (88.25) 39.15 (10.52) 

A = 10 32.75 (24.92) 193.5 (539) 160.75 (393.58) 27.52 (14.62) 

A = 20 29 (8.67) 126.5 (53.67) 97.5 (67) 24.48 (6.94) 

A = 40 19.5 (0.33) 98 (1078) 78.5 (1013) 16.75 (1.12) 

Parameters Values 

Tolerisation Period (T) 30 

Life Span of Mature Detectors (L) 10 

Activation Threshold of Mature Detectors (A) {5, 10, 20, 40} 

Number of Generations that Antigens are 
Selected from the Same Cluster (N) 

30 



The effects of hypermutation are clearly revealed when 
these results are compared to the results obtained in the 
previous work (Bentley and Kim 2002b). From figure 2 
and 3, FP rates are consistently low except one case 
where A = 5 and mutation rate = 0.2. The differences in 
TP rates depending on different mutation rates are clearly 
noticeable when A has a larger value. For instance, when 
A is 40 without mutants of memory detectors, TP rates 
ranged between 0.5 and 0.9. On the other hand, when A is 
40 with mutation rate = 0.2, TP rates increase so that they 
range between 0.85 and 0.95 (see figure 3). More 
importantly, the improvement in TP rates was obtained 
without increase of FP rates. The scale of TP rate increase 
is much more noticeable when mutation rate is 0.2 
although TP rate increase can be seen when A is 40 with 
mutation rate = 0.1 (see figure 2). Thus, it is verified that 
hypermutation affects the result of extended DynamiCS in 

a positive way: TP rates increase while maintaining low 
FP rates. 

In addition, when A = 40 with mutation rate 0.2 which 
shows high TP rates and low FP rates, extended 
DynamiCS still maintained the average number of 
memory detector co-stimulation per generation as small 
as seen previously, when mutants of memory detectors 
were absent (Kim and Bentley 2002b). This result can be 
found from table 2 and table 3. They show the total 
number of surviving, generated and deleted memory 
detectors for total two thousand generations when 
mutation rate is 0.1 and 0.2 respectively. These numbers 
are the average numbers of five runs. For both cases, 
extended DynamiCS had the smallest number of memory 
detector co-stimulation when A = 40. Furthermore, when 
the extended DynamiCS had a larger mutation rate, 0.2, it 
performed less memory detector co-stimulation than when 
it had a mutation rate 0.1. 
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Figure 2. TP and FP rates when A varies and T = 30, L = 10, N 
=30 with mutation rate = 0.1 

Figure 3. TP and FP rates when A varies and T = 30, L = 10, 
N =30 with mutation rate = 0.2 



 

To summarise, two series of experimental results show 
that TP rates increased when immature detectors were 
generated by applying a hypermutation operator to 
deleted memory detectors. Furthermore, it maintained low 
FP rates and the small number of memory detector co-
stimulation. These positive effects were more clearly 
found when a larger mutation rate was applied.  

5 DISCUSSION OF DYNAMICS  

DynamiCS has been introduced to make our AIS fulfil 
two properties required by an effective intrusion detection 
system: learn stabilised self behaviours when presented 
with only a small subset of self antigens at one time and 
learn sudden changes in converged self behaviours. In 
order to provide these features to the AIS, DynamiCS 
employed several novel components such as immature, 
mature and memory detector populations, tolerisation 
period, activation threshold, mature detector life-span, 
mature and memory detector co-stimulation and applying 
hypermutation to generate immature detectors. All of 
these novel components were designed by following the 
mechanisms existing in the human immune system and 
thus led the AIS to yield desired two properties.  

Many of these novel components are based on the 
different AIS, called LYSIS, proposed by (Hofmeyr, 
1999; Hofmeyr and Forrest, 2000). LYSIS is also 
equipped with three detector populations (immature, 
mature and memory), tolerisation period, activation 
threshold, co-stimulation and mature detector life-span. 
(Hofmeyr, 1999; Hofmeyr and Forrest, 2000)  tested 
LYSIS system against network traffic headers collected 
for 50 days, consisting of 3900 unique self strings. In 
order to scale this size of self strings,  (Hofmeyr, 1999; 
Hofmeyr and Forrest, 2000) developed LYSIS in a 
distributed environment and thus fifty different hosts 
generated total 5000 immature detectors per day. Similar 
to DynamiCS, LYSIS also dynamically generated 
immature detectors and started to monitor new antigens 
after the first tolerisation period. Although this system 
was tested against real network headers, the real 
environment scenario given to these tests was only limited 
to the first real environment scenario studied in this work: 
learn stabilised self behaviours with only a small subset of 
self antigens at one time. Thus, DynamiCS is the only 
AIS that employed novel components introduced in this 
work and has been tested on another important IDS real 
scenario: learn quickly any sudden changes in converged 
self behaviours. Under this scenario, DynamiCS was 
capable of detecting non-self antigens in a satisfactory 
level without losing its self-tolerance and this was 
achieved by applying hypermutation, which is not 
adopted by LYSIS.  

(Hofmeyr, 1999; Hofmeyr and Forrest, 2000) investigated 
a way to tune LYSIS behaviours to get desired TP and FP 
rates. This study was focused on choosing an appropriate 
tolerisation period, activation threshold and decay rate. It 

should be noted that the decay rate used in LYSIS was not 
adopted by DynamiCS. It was regarded that the number of 
parameters used in DynamiCS already seemed to be large 
enough to make controlling system behaviour difficult. 
Although a decay rate was introduced in LYSIS in order 
to replace detectors in a more dynamic way, DynamiCS 
managed to provide a similar effect without this 
parameter by using a gene library evolution model with 
hypermutation. 

6 CONCLUSION 

As one way to decrease the poor FP rates caused by 
memory detectors, DynamiCS was extended by 
eliminating memory detectors when they showed a poor 
degree of self-tolerance to new antigens (Kim and 
Bentley, 2002a). This extended system was tested to 
determine whether surviving memory detectors no longer 
caused seriously high FP error rates or not. The test 
results showed that deletion of memory detectors based 
on their self-antigen detection dramatically decreased 
high FP rates. However, this method required a larger 
amount of co-stimulation in order to gain such benefits. 
The large amount of co-stimulation can render the system 
weak for intrusion detection. This disadvantage demanded 
further extension of DynamiCS. 

In order to resolve this problem, this paper explored the 
use of hypermutation in DynamiCS to produce the effect 
of gene library evolution. This additional extension was 
designed to fine-tune generated memory detectors so that 
the system obtained higher TP rates without increasing 
the amount of co-stimulation. The gene library evolution 
was modelled by producing immature detectors via 
hypermutation on deleted memory detectors. Thus a 
“virtual gene library”, made from mutations of deleted 
memory detectors was maintained. The new extension 
was tested to determine whether it achieved high TP rates 
without increasing the amount of co-stimulation. The test 
results confirmed that hypermutation enabled the 
evolution of the virtual gene library and thus produced 
immature detectors that were better tuned to cover 
existing non-self antigens.  
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From Optimization to Learning in Changing Environments:The Pittsburgh Immune Classi�er System
Alessio Gaspar and B�eat HirsbrunnerPAI Group, Computer Science Department University of Fribourg (DIUF), Switzerland)http://www.unifr.ch/diuf/pai/ [alessio.gaspar|beat.hirsbrunner]@unifr.chAbstractA simple computational model of secondary im-mune response is used to provide a Pittsburghstyle classi�er system with the ability to improveits reaction to already encountered situations ina dynamical cyclic learning environment. Mainresults obtained with our core algorithm (YaSais)on Time Dependent Optimization problems arebrie
y reminded before to introduce the Pitts-burgh Immune Classi�er System (PICS) which isthen experimentally evaluated on both a staticand dynamical multiplexer problem. Eventually,the Lazy Optimality E�ect, keystone of YaSais'e�ciency, is re-examinated in PICS. Suggestedenhancements are then experimentally evaluated.1 Introduction1.1 Motivation, Previous workWhile it is commonly admitted that evolutionaryalgorithms are adaptive computation approaches,their convergence limits their adaptiveness. Di-versity loss eventually disables the crossover ef-fects and leaves mutations as the only explorationdrive. Consequently, Evolutionary Time Depen-dent Optimization (ETDO) is often used as abenchmark for adaptiveness [14, 13, 16]. Thisframework led us to suggest three necessary (butnot su�cient) properties to characterize the adap-tiveness in changing environments [4]:Reactiveness: ability to recover from transitionsand �nd the new optimum.

Robustness: ability to limit the loss in the best�tness value featured by the population when thetransition occurs.Immunization: ability to improve the robust-ness when undergoing a transition to an alreadyencountered optima.So far, we focussed on evaluating a Simple Arti�-cial Immune System for Evolutionary TDO. Theresults were interesting and encouraged us to in-vestigate how such a basic algorithm can performin learning problems by combining it with clas-si�er systems with the objective to provide thelatter with an immunization capability.1.2 Objective StatementsWe are switching from Time Dependent Opti-mization (TDO) to Time Dependent Learning(TDL) problems and evaluating, along the way, asimple, general purpose, immune algorithm. Nextsection introduces the YaSais algorithm [6, 4],sums up previous results and details the Lazy Op-timality E�ect, keystone of its e�ciency in TDO.Section 3 introduces the Pittsburgh Immune Clas-si�er System (PICS) as a combination of YaSaiswith a Pittsburgh Classi�er System (PCS). Pre-liminary results on a static and then dynamic mul-tiplexer problem (MUX) are compared to thoseobtained by YaSais's on TDO. Section 4 furtherdetails how speci�c evolutionary e�ects presentin YaSais introduced unexpected results in PICS.Suggestions as to how to improve PICS are thenevaluated. Section 5 concludes by discussinganalogies with latent learning classi�er systems.



2 YaSais: the core immune algorithm2.1 GeneralitiesThis section describes YaSais (Yet Another Sim-ple Arti�cial Immune System), an improved ver-sion of Sais algorithm [5], and reviews the mostimportant results (immunization, LOE) needed toground our later discussion on PICS.To quickly locate YaSais among Evolutionary Al-gorithms, let's describe it as a Genetic Algorithmwhich K-Tournament selection has been modi-�ed in order to select only some individuals tobe cloned and then used to perform exploration(crossover and high mutation rate are applied),and which favors good parents vs. mediocreo�springs during recruitment. The main di�er-ences are (1) explicit clustering of the populationinto gatherings, (2) selection of individuals to becloned while others are kept unchanged (clonal se-lection) and (3) use of intensive exploration tech-niques (somatic hypermutation) on clones.To be more accurate, YaSais's key idea is to dividethe population into G equi-sized gatherings of B-Cells1. The selection mechanism decides which B-Cell(s) per gathering will be activated and serveas a basis for further exploration. This approachis loosely inspired by Jernes' Idiotypic Networkstheory [9, 10] on immune system's memory.Simply stated, B-Cells2 can be activated by anti-gens (when directly useful against one of them) orby other B-Cells (anytime). Therefore, if B-CellA activates B which activates C which in turnactivates A, we have a self reinforcing dynamics.Each B-Cell's activation, and therefore reproduc-tion, is ensured in an endogenic way and memo-rizing boils down to integrating B-Cells into suchidiotypic cycles.Evolutionary Algorithms inspired by this theorybend the evolutionary dynamics so that it is notonly convergent but also maintains stable sub-population with respect to other �tness criteriathan optimality in the current environment (eg.previous optimality in TDO).1aka chromosomes in other evolutionary algorithms.2We do not di�erentiate B-Cells and antibody herein.

2.2 YaSais Algorithm� 0. Initialization: create P (0){ Let P (0) be a population of jP j randomB-Cells each � bits long.{ Arbitrary, P (0) is divided in G groups ofB-Cells (Gatherings).{ Generation number t is set to 0.� 1. Evaluation{ For each B-Cell in P (t), compute its �t-ness. For the Pattern Tracking, it is thecomplement of its Hamming distance tothe current arbitrary chosen optimum.{ For each Gathering in P (t), mark thebest �tted B-Cell. There will be G B-Cells marked in P (t).� 2. Clonal Selection: P (t)! Pex{ Create an empty population Pex of sizejPexj = G�CF , where CF is a parameterof the system (the Cloning Factor).{ Fill it with G B-Cells by K-Tournamentsamong the ones marked in Pex.{ Copy each B-Cell added to PeX CFtimes (cloning).{ For each clone in Pex, apply high raterandom mutations (hypermutating).� 3. Recruitment: P (t) + Pex ! P (t+ 1){ For each of the G marked B-Cells in P (t),select a challenger with a K-Tournament(K = 3) in Pex and replace the currentB-Cell only if less �tted.{ Let P (t+ 1) = P (t){ Branch to bf 1. (�xed iterations)2.3 YaSais Algorithm step by stepEvaluation PhaseIn a Pattern Tracking problem [13], the opti-mum is arbitrarily chosen as a point of the searchspace every g generations. The �tness of eachB-Cell is therefore measured as its Hamming dis-tance to the current optimum (thus simulatingimmune-like matching to a given antigen): 8Bi 2



P (t); F itness(Bi) = ���h(Bi; Ot) where Bi is theith B-Cell of P (t), Ot the optimum at time t, �the length of its binary code and �h the Hammingdistance. Every �t = 50 generations (transitionperiod), a new optimum is randomly chosen at aHamming distance �d from the previous one (tran-sition distance). This evaluation also enables usto mark the n best �tted B-Cells in P (t) (n beingan heuristic value).Pattern Tracking can be seen as the dynami-cal counterpart of the 0-max problem which hasbeen widely used to understand genetic algo-rithms. The reasons for choosing this benchmarkare twofold. At �rst, it is simple from a staticpoint of view which helps in keeping experimentsfocussed on the dynamical di�culty and avoid bi-ases induced by static aspects. Secondly, its pa-rameters can be set to feature a speci�c dynamicaldi�culty [3]. This helps evaluating YaSais on wellunderstood and controlled di�culty levels.Clonal Selection PhaseThis phase mimics the core of the immune sys-tem's evolutionary dynamics [8]: cloning theB-Cells matching antigens. We pick up theG best B-Cells from P (t) and clone them CF(Clonal Factor parameter) times each to obtainthe temporary population Pex. Then, we simu-late Somatic Hypermutation3 by randomly mutat-ing each member of Pex and preserving only themutants improving �tness.Recruitment PhaseEventually, we reintroduce worthy B-Cells fromPex into P (t) in order to build P (t + 1). The B-Cells that have not been involved in the buildingof Pex remain unchanged so that they can imple-ment an implicit memory of past optima. Themarked B-Cells are compared to the winner of aK-Tournament (K = 4) in Pex and only replacedif being less �tted.This approach both guarantees stability of thedensities of previous optima which �tness is of nointerest anymore, and an elitist dynamics whichforbids the best �tness featured at next genera-tion to be lower than the current one.3Natural Somatic Hypermutation mutates the DNA ofB-Cells resulting from clonal selection [8].

2.4 Previous Experimental ResultsWe brie
y sum up previous experimental resultsobtained with YaSais on a Cyclic Pattern Track-ing (PT) problem [13, 16] with a focus on its im-munization capability only.In a Cyclic Pattern Tracking (CPT), a list of nsuccessive optima is de�ned (�t �xed for all). Anepoch is a duration of n � �t generations duringwhich all optima are presented. Epochs followeach other and thus enable us to evaluate YaSais'reaction to already encountered transitions.YaSais features a tradeo� between reactivity androbustness [6]. Most evolutionary TDO solutionstrade a good robustness for a high �tness levelor vice et versa. By comparing YaSais to robust[2, 15] and reactive [17, 1, 7] algorithms, we un-derlined that YaSais is equivalent in terms of ef-�ciency to method up to 4 times more compu-tationally expensive which dominate other evolu-tionary algorithms that were compared in [4].On the other hand, YaSais featured an immu-nization capability which is illustrated by Figure1. This experiment was averaged over 50 runsfor a length of 1000 generations (4 epochs). Ya-Sais (CF = 4,G = 8, K = 4, jP j = 40, � = 40,Xc = 0:7, � = 0:01) was applied to a Cyclic Pat-tern Tracking problem with 5 optima (�t = 50 and�d = 5 then increased by 5 at each transition).The upper part of the Figure plots the best �tnessper generation. The �tness loss at transitions isreduced over consecutive epochs which is the signof an ongoing immunization. In the lower part ofthe Figure, the densities of the 5 successive op-tima used in this environment are plotted. Thiscomplements the previous information by show-ing the number of copies of each optimum growduring the period at which is it the current opti-mum. Moreover, these density curves also showthat once non longer the current optimum, eachof these individuals is kept in the population.2.5 The Lazy Optimality E�ect (LOE)So YaSais features an immunization capabilitybut all optima are not memorized durably in



the population and �tness keeps dropping slightlywhen they are encountered again. Why ?
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Figure 1: YaSais / Cyclic Pattern TrackingTop: best �tness, Bottom: 5 optima's densitiesAt each generation, jP j � G B-Cells are kept un-changed and G are chosen to initiate an intensivesearch. This mechanism is responsible for loosingprevious optima. By taking a closer look to tran-sitions in a single-run experiments (CPT, G = 8gathering, 5 B-Cells each) we observed the follow-ing pattern: the density of the current optimumdecreases suddenly (eg. 6 B-Cells) and keeps do-ing so (less signi�cantly though) during consec-utive transitions. On the other hand, density ofthe next optimum increases from 2 to 8 B-Cells(same example transition).Why are the B-Cells encoding the current opti-mum more often selected ? Quite simply, theyare (on average) the closest to the new optimumin the population. Remember that in our CPTproblem the n optima are determined as follow:B-Cells are divided in �=n bit-long blocks, 1stoptimum is all '0' except for '1' �lling the 1stblock, 2nd optimum has 2nd block set to '1' andso on. Consequently, the Hamming distance be-tween consecutive optima is constant and equalsto 20 bits (n = 5 and � = 50).We know that YaSais will mark the closest B-Cellsto the new optimum. The probability of a randomstring to match the new optimum is 0:5� and theprobability for it to be located at a Hamming dis-tance less or equal to 20 is P = P20d=0 0:5�:Cd�.

That is, the probability for a non-previously opti-mal B-Cell (assumed to be random) to be locatedcloser to the new optimum than any previous op-timum is P = 0:1 in our case.We checked this on a transition in the previousexperiment. At generation 1000, YaSais lost 6B-Cells encoding previous optimum and gained 6B-Cells encoding new optimum (from 2 to 8). Wealso counted 17 instanced of current or previousoptima. Among the 23 remaining B-Cells, 3 only(P = 0:1) have a chance to be selected instead ofprevious optima. Knowing that G = 8 are goingto be picked up, even if all 3 are retained, 5 out of6 B-Cells encoding previous optimum should beused for exploration (6 B-Cells were used).Therefore, if two consecutive optima are closeenough, the system forgets about the previousone but still features an overall good performance.Why ? When the distance is short, previous op-tima are lost but with limited consequences since�nding the new one is simple enough. Otherwize,if the transition gets more di�cult, the immuniza-tion plays its role. We termed this the Lazy Op-timality E�ect (LOE), since immunization is onlyused when nothing simpler works.We replicated previous experiment with only twooptima and varied their relative distance to checkthe in
uence of this factor. Figure 2 con�rms thatfor a high distance (12 and above) the immuniza-tion is perfect. On the other hand, results arequite good for a very low distance as well (2) andless good between those two extrema. This is nosurprise since a small �d minimizes the �tness loss(cf supra) but it is important to understand thatthis is achieved without immunization. Examin-ing the density curves of each optima con�rmsthat with small �d, optima are lost regardless ofthe misleadingly appealing �tness curve.2.6 Conclusion: YaSais / TDOThe experimental results on Pattern Tracking re-vealed that YaSais is an e�cient dynamical op-timization Tool. A restriction should be kept inmind as we only considered so far non epistasicproblems for which we suspect the somatic hy-
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Distance 12Figure 2: YaSais / Cyclic Pattern TrackingDistance Between Optima vs. Immunizationpermutation to play a central role in improvingthe system's reactiveness (cf next section).YaSais also features an improved robustness toenvironmental changes; Whenever the transitions

are easy (low �d), the natural diversity kept inthe population is enough to ensure a good levelof �tness to be kept during the transitions. Onthe other hand, when confronted to di�cult tran-sitions, YaSais takes advantage of any relevant in-formation in the population such as previous op-tima. Therefore, an implicit tradeo� is realizedbetween the use of the random diversity and the\oriented one" induced by the immunization pro-cess. The rule seems to be \if it is hard to �nd,remember it, otherwise, just drop it". Even if notreaching a perfect immunization ability as we ini-tially expected, we must admit that, although itis more \lazy", YaSais uses at best its capabilities.3 PICS Time Dependent Learning3.1 PICS algorithmClassi�er Systems (CS) have been investigatedin two main 
avors. Michigan style CS evolvea population of rules which constitute altogetherthe CS which policy is evaluated in a given en-vironment. If a reward is earned, ReinforcementLearning techniques are used to perform the nec-essary Credit Assignment among the rules thatcontributed to the successful behavior.On the other hand, the Pittsburgh approach isabout evolving a population where each individ-ual encodes the ruleset of an independent CS.Fitness is computed by decoding a given individ-ual into a CS and evaluating its interaction withthe environment (eg. average reward over a giventime). This approach only relies on evolution to�nd e�cient classi�ers and is therefore a naturalcandidate for designing an hybrid algorithm em-bedding the key features of YaSais.Therefore, we evolved individuals encoding fullCS with YaSais instead of a conventional Evolu-tionary Algorithm. Our objective is to provide acognitive immunity by preserving previously use-ful policies in the population. This section detailsexperiments on both static and dynamic multi-plexer problems and discusses LOE in a learningcontext.



3.2 Preliminary Experiments: S-7-MUXLet us consider a 7 bits instance of the Static Mul-tiplexer Problem (S-7-MUX): we have 6 bits longinputs and 1 bit output. The input is separatedin 2 address bits and 4 data bits. For any input,the correct output is the input data bit locatedat an index given by the decimal value of the 2input address bits. For instance, input [10 0010]corresponds to output [1]. Consequently, the fol-lowings are the minimal and most generic [11] setof rules solving the 7 bits multiplexer problem:[00 0]]]] ! [0] [10 ]]0]] ! [0][00 1]]]] ! [1] [10 ]]1]] ! [1][01 ]0]]] ! [0] [11 ]]]0] ! [0][01 ]1]]] ! [1] [11 ]]]1] ! [1]Ideally, classi�er systems should converge towardthis rule set. Basic approaches do not most ofthe time but recent advances help in ensuring thegenerality of the solutions [18].We started o� by applying PICS to S-7-MUXwith the following experimental conditions:1300 generations, results averaged over 20 runsB-Cells: � = 140 bits encoding 20 rulesRules: [2 + 4] : [1] (input = 2 bits address + 4bits data, output = 1 bitPopulation: jP j = 100Evaluations: over 30 input samples (among 64possible) randomized at each �tness function callSelection: K = 2 (select) K = 3 (recruit)PICS speci�cs: G = 20, CF = 3Operators: Xc = 0:8 (uniform) and � = 0:01Figure 3 plots the �tness of the best individualof each generation (upper curve). Knowing thatthe best reward in this one-step environment is1000, we can deduce that the approach is perform-ing decently, featuring an asymptotic convergencewhich is pretty common in evolutionary compu-tation. During single runs, we picked up the bestindividual at generation 1300 and fed the classi-�er system it encodes with all 64 possible input.The result of this evaluation of its \coverage" ofall perceptions revealed that highly �tted individ-uals's coverage copuld be as low as 47%.To be able to measure this phenomenon reliably
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Bst Real FitnessFigure 3: PICS / S-7-MUXTop: Evaluated Fitness, Bottom: Real Fitnessand understand it better we decided to measureanother statistics during the experiment. Thelower curve represents the �tness of the best B-Cell of each generation once computed over 300samples. This value is more representative of thetrue value of each individual and, as can be seen,is lower than the one featured by the \quick" 30samples evaluation scheme driving evolution.Let us keep this issue in mind and move on tothe other experiments. Section 4 will revisit theseobservations, suggest and evaluate a solution.3.3 D-7-MUX ExperimentThis section completes the previous experimentby evaluating PICS immunization capability ina dynamical environment. The dynamical 7 bitsMultiplexer problem (D-7-MUX) is similar to itsstatic counterpart. We decided to have a transi-tion period �t = 2000 to allow full convergence.Four di�erent environments are going to be pre-sented during one epoch (8000 generations) andthen repeated over and over for 4 epochs (32000generations). The �rst environment is S-7-MUX.Then, we generated 3 other environments from itby adding a shift value � when decoding the ad-dress bits. During �rst period, � = 0 then � = 1and so on up to � = 3 after which � = 0 againas we start a new epoch. Consequently, input ad-dress bits 00 will correspond to the 1st input databit during 1st period, then to the 2nd during 2nd



period and so on. Let's see how input [00 01_0 _1]is multiplexed in the 4 environments4:� = 0 [00 01_0 _1] ! [0]� = 1 [00 01_0 _1] ! [1]� = 2 [00 01_0 _1] ! [ _0]� = 3 [00 01_0 _1] ! [ _1]Figure 4 also plot the best �tness per generationas evaluated by PICS (upper curve) and accu-rately evaluated over 300 samples (lower curve).The vertical dotted lines represent transitionsfrom one epoch to another. Other parameterswere kept identical to previous experiment. Thefollowing observations can be made:Immunization:PICS is indeed able to get immunized to previ-ously encountered optima. Both �tness curvesprogressively reduce their drop o� at transitionsto new optima over epochs. PICS' core algorithmtherefore turned out to be able to feature an iden-tical immunization ability for both TDO and TDLproblems which is the �rst point we wanted tomake sure of in this paper.Resuming Learning:Both best �tness curves, but especially the lowerone, increase from epoch to epoch. After reachinga certain �tness level while solving the �rst envi-ronment (� = 0), PICS deal with 3 other environ-ments. When it is again dealing with the �rst one,its immunization, besides increasing robustness,also enables it to use the �t = 2000 generations ofthe period to improve its �tness level in this envi-ronment. It seems to do so from epoch to epoch,\resuming" its learning of each successive optimaeach time and giving an overall asymptotic trendof improvement.Fitnesses Di�erences:It can also be noticed that the di�erence betweenboth �tness curves tends to reduce asymptoti-cally over epochs. It can be said that despitethe problem underlined in the previous section,PICS manages to overcome it over time as it ac-cumulates information about its environment overepochs instead of converging and discarding any4Doted notation _0 and _1 is only used to make the ex-ample unambiguous, only a binary alphabet is used.

information while re-converging toward anotheroptimum.
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Bst Real FitnessFigure 4: PICS / D-7-MUXTop: Evaluated Fitness, Bottom: Real Fitness4 Corrupted Lazy Optimality E�ect4.1 From LOE to CLOEOur hypothesis is that the LOE is responsible forthe observations in Figure 3.The upper part of Figure 5 illustrates how B-Cellsshould be specialized. Let us consider one gath-ering in P (t). Once the �tness function is com-puted for all its B-Cells, one is activated (selectedto be copied into Pex). This B-Cell will be re-placed by a better �tted o�spring resulting fromthe exploration performed in Pex. This can beseen as the gathering getting its best �tted B-Cell furthermore specialized to �t the problem athand. When environment changes, another indi-vidual will be specialized to meet its requirementsor a previously activated one re-used thus loosingpart of its previous specialization (LOE).The lower part of Figure 5 illustrates what hap-pens in practice when changing the evaluation setevery generation. As can be seen, this boils downto changing the �tness function and PICS reactsby specializing another B-Cell (LOE). Conceptu-ally, this is right insofar that, from the evolution-ary algorithm standpoint, Time Dependent andStochastically Evaluated �tness landscapes are thesame: �tness values are altered over time. What
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Figure 5: CLOE: specialization of B-CellsTop: expected activation, Bottom: observed onecauses such a change does not make much quali-tative di�erence even though it may in
uence dif-�culty of transitions [3]. Nevertheless, we wouldlike PICS to di�erentiate between changes in theenvironment, which call for specialization, andbias due to the stochastic nature of evaluation.It is worth noticing that in practice the situationis even worse since the evaluation sample is ran-domized at every �tness function call thus increas-ing the bias in comparison to the above example.Next section evaluates a way to compensate thisCorrupted Lazy Optimization E�ect (CLOE).4.2 Getting to know CLOE betterAs previously stated, if we take the best B-Cellproduced by a run and evaluate it on all possible64 inputs, its e�ciency is way inferior to what its�tness value promised. This can be seen by takingthe best B-Cell of each generation and evaluatingits �tness over 300 samples instead of 30.This suggests that a whole gathering may be ableto react correctly to all possible inputs but a sin-gle B-Cell is not. While we expected B-Cells ofa gathering to specialize into successively optimalpolicies, it seems they specialized in solving sub-sets of all possible input samples.How can we help PICS to specialize only dur-

ing transitions ? Our working hypothesis is thatchanging the evaluation set at each generation (asillustrated in Fig. 5) or at each �tness call (asdone by PICS) makes a di�erence. We checked itby changing the stochastic evaluation policy ac-cordingly and decided to randomize the evalua-tion samples set at each generation and use it forevaluating the whole population.The top plotting in Figure 6 is similar to Fig.3. Experimental conditions were identical (S-7-MUX) except concerning evaluation policy. Thefollowing observations can be made:Convergence Time:It has been shortened from 1400 to 400 genera-tions thus providing the algorithm with a fastestway to handle static learning problems.Fitnesses Di�erences:The sampled �tness values converge sooner to-ward the ones obtained with a thorough evalu-ation. This should lead to a better accuracy ine�ciency of evolved policies.Our second hypothesis is that the more two con-secutive evaluation sets di�er, the more likely itis for another B-Cell to be activated (cf. LOE).Therefore, we introduced the overlap parameter:the number of samples kept unchanged from onegeneration to the next in the evaluation set.The �rst plotting in Figure 6 had a null overlap(new evaluation sets at each generation), the sec-ond has a maximal value (29 samples are kept un-changed over 30). Results indicate that increas-ing this parameter degrades e�ciency and furtherseparate the real �tness value from the one com-puted by PICS internally. This clearly invalidatesour hypothesis and leads us to conclude that thebest evaluation policy is to use the same evalu-ation set for the whole population and change itcompletely at each generation to maximize the di-versity of samples the system learns from.5 Conclusion5.1 DiscussionPICS shows that YaSais core principles can beused to get immunized to successively optimal
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Bst Real FitnessFigure 6: PICS / S-7-MUXNew Evaluation Scheme (overlap parameter)policies in a TDL problem. The learning problemwe investigated can also be seen as a highly epis-tasic, stochastically evaluated optimization prob-lem and thus as a validation of our immune corealgorithm on a more di�cult problem than thePattern Tracking one that we used so far.An interesting analogy can also be drawn with thelatest advances from the Classi�er System com-munity concerning latent learning approaches.These systems do not only seek for an optimalpolicy in a given environment but also build pro-gressively a model of the environment which isimproved by every trial no matter how wrong orright it is [12]. PICS also models successivelyoptimal policies which, combined altogether, de-scribe the whole environment dynamics. This in-formation could be used by engineers to improveevolved classi�er systems or simply understandhow the system came to such a solution.

5.2 SynthesisThis paper presented an hybrid algorithm com-bining an immune algorithm (YaSais) with aClassi�er System. The so-called Pittsburgh Im-mune Classi�er System (PICS) has been evalu-ated in both a static and dynamic Time Depen-dent Learning (TDL) environment based on the7 bits multiplexer problem. Preliminary experi-mental results revealed that PICS features a sec-ondary immune response in its way to discoverand memorize optimal policies for various envi-ronments. A particular evolutionary e�ect hasbeen given more attention, explaining e�ciencyand suggesting a new improvement which was de-tailed and evaluated on a static environment.5.3 PerspectivesCurrent work focuses on CLOE as well as deter-mining the in
uence of main parameters (CF, G).A reviewer's suggestion also caught our interest:Is YaSais suitable for multimodal optimization de-spite the fact that explicit clustering is intuitivelynot interesting if no information on the numberof peaks is available ? Each gathering should con-tain elements from all niches and thus the gather-ing's size (and number) is critical to ensure theycan hold all optima in the multimodal or dy-namic environment. This makes setting the Gparameter highly problem-dependent. This argu-ment relies on the assumption that each gather-ing converges to the same set of optima. If YaSaiscan evolves di�erently composed gatherings, theirnumber and sizes become less critial in providinginstances of all optima in the population. Thisremains to be established.Acknowledgment: Swiss National ScienceFoundation grant #20-65301. We are grateful tothe reviewers for the above discussion.References[1] H.C. Cobb and J.J. Grefenstette. Geneticalgorithms for tracking changing environ-ments. In Icga-5, 1993.
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Abstract

The purpose of this work is to investigate
a hybrid approach (neuro-immune tech-
nique) for anomaly detection on time se-
ries data. In many anomaly detection ap-
plications, only positive (normal) samples
are available for training purpose. However,
conventional classification algorithms need
both positive and negative samples. The
proposed approach uses normal samples to
generate abnormal samples that are subse-
quently used as training data for a neural
network. The approach is compared against
an anomaly detection technique that uses
self-organizing maps to cluster the normal
data sets (samples).

1 Introduction

The anomaly detection problem can be stated as a
two-class classification problem: given an element of
the space, classify it as normal or abnormal. Different
terminologies are used in different applications, such
as “novelty [3] or surprise [13] detection”, “fault de-
tection” [20], and “outlier detection” . Accordingly,
many approaches have been proposed which include
statistical [4], machine learning [15], data mining [16]
and immunological inspired techniques [2, 8, 11].

In many anomaly detection applications, however,
negative (abnormal) samples are not available at the
training stage. For instance, in a computer security
application, it is difficult, if not impossible, to have
information about all possible attacks. In the machine
learning approaches, the lack of samples from the ab-
normal class causes difficulty in the application of su-
pervised techniques (e.g. classification). Therefore,

the obvious machine learning solution is to use an un-
supervised algorithm (e.g. clustering).

In our previous work [9], we presented an approach
inspired by the immune system that allows the ap-
plication of conventional classification algorithms to
perform anomaly detection tasks. This approach uses
a negative selection algorithm (NSA) [6] coupled with
a classification algorithm to produce an anomaly de-
tection function. The paper [9] examines the possibil-
ity of combine NSA with a neural network classifier
in order to detect anomalies in a time series. The pur-
pose of the present work is to perform further experi-
mentation and compare the results to those produced
by an unsupervised technique that clusters the nor-
mal samples.

The clustering technique used for this purpose is self-
organizing maps (SOM) [14]. It is applied to the
normal samples to produce clusters that constitute a
compact description of the normal space. This com-
pact representation is subsequently used to classify
new samples as normal or abnormal [7, 17, 12].

2 Neuro-Immune Technique for
Anomaly Detection

The NSA was initially proposed by Forrest and her
group [6] based on the principles of self/non-self dis-
crimination in the immune system. It uses as input, a
set of strings that represents the normal data (self set)
in order to generate detectors in the non-self space.
The negative detectors are chosen by matching them
to the self strings: if a detector matches it is discarded,
otherwise, it is kept. Some efficient implementations
of the algorithm (for binary strings) that run in linear
time with the size of self have been proposed [5, 6, 11].
However, the time complexity of these algorithms is
exponential on the size of the matching window (the
number of bits to use in the comparison of two binary



strings).

We proposed [9] a new version of the NSA that rep-
resents the self/non-self space as � -dimensional real
vectors. One of the advantages of this approach is
that it is easier to extract meaningful knowledge from
the generated detectors as the representation is closer
to that of the problem space. The detectors generated
by the NSA are used as artificial abnormal samples
that serve as input to a classification algorithm that
learns an anomaly detection function.

Similar to the binary-valued NSA [6], the real-valued
NSA [9] tries to cover the non-self space with mini-
mum number of detectors. This is accomplished by
an iterative process that updates the position of the
detectors driven by two objectives: to move detectors
away from self points and to keep the detectors sep-
arated in order to maximize the covering of non-self
space (non-overlapping). This algorithm is shown in
Figure 1.

’d.iter’++ ’d.iter’ = 0

Discard ’d’
Move ’d’ away

from self

’d.iter’ > ’t’ ? Move ’d’ away
from other
detectors

any self point?
Does ’d’ match

For each detector ’d’

NoYes

NoYes

Figure 1: Illustrates an iteration of the real-valued
negative selection algorithm with a flow diagram.

We used a hybrid approach by combining NSA and
a neural network–multi-layer perceptron (MLP) with
a hidden layer trained using back-propagation [10].
Figure 2 illustrates the basic idea of the approach.
During the training stage, the input corresponds to
the normal samples (feature vectors extracted from
normal time series), while the NSA [9] is used to gen-
erate abnormal samples. Subsequently, the normal
and abnormal samples are used to train a neural net-
work classifier. The trained neural network corre-
sponds to the anomaly detection function that is used
during the testing phase to classify new samples as
normal or abnormal.

Anomaly
Detection
Function

Samples
New

Samples

Negative

Negative
Selection
Algorithm

Normal
Samples

Abnormal

Training Detection

Normal

Classification
Algorithm

NN Based

Figure 2: A process to generate an anomaly character-
ization function from normal samples.

3 Anomaly Detection Using
Self-Organizing Maps

A self-organizing map (SOM) is a type of neural net-
work that uses competitive learning [14, 10]. A SOM
is able to capture the important features contained on
the input space and provides a structural representa-
tion that preserves a topological structure. The out-
put neurons of a SOM are organized in a one- or two-
dimensional lattice. The weight vectors of these neu-
rons represent prototypes of the input data that can
be interpreted as the centroids of clusters of similar
samples.

In our experiments, we used SOM to cluster the nor-
mal samples. After the network is trained, the gen-
erated clusters are used to determine if a new sample
is normal or abnormal. The basic idea is: if a new
sample is ’close’ enough to a normal cluster it is con-
sidered normal, otherwise it is classified as abnormal.

In general, we have a distance function
�������	�
����
��

that
measures how close the sample s is to the cluster, K.
To determine the abnormality of a new sample, the
following function is used:�������	���������������������! #"%$'&��������	�
����
)(*�'+�
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where, C is the set of clusters (found by the SOM al-
gorithm) that represents the normal sub-space. If we



think the function
�������	�
����� ��� ���D�
�

is a kind of mem-
bership function1 of the abnormal subspace, the func-
tion 2 3	4�5�6�7�9:3<; ����� corresponds to the crisp version of
it. In this case, the value t represents a threshold that
defines the boundary between the normal and abnor-
mal classes.

In order to determine a good distance measure���B���	������
��
, we tested three options (in all the cases��� represents the centroid of the cluster K, neuron

weights):

� Euclidean distance. This is the natural (or naive)
choice since the SOM algorithm uses it to deter-
mine if a sample belongs to a given cluster:���B���	������
��=���	��� ��� �

� Normalized distance. The idea is to take into ac-
count the size of the cluster. Some clusters can be
very sparse and others can have all the elements
concentrated around the centroid. A measure of
the size is the standard deviation. So, the stan-
dard deviation of the distance to the centroid of
all the elements in a cluster ( 	 � ) is calculated and
it is used to normalize the distance:

���B���	������
��=� �	��� � � �
	 �

��

� Minkowsky distance. The Euclidean dis-
tance gives the same importance to all the fea-
tures. So, it is possible that a sample with a
non-negligible deviation in one feature will be
considered as having the same overall deviation
as a pattern with small deviation on many fea-
tures. The 
 � distance only takes into account
the maximum of the differences for all the fea-
tures:�������	�
����
 �=�  
��� &D+ � ( � ����� + for

� � @ �������	� � 0
4 Time Series Data Set

We used the Mackey-Glass equation to generate time
series data. It is a non-linear, delay-differential equa-
tion whose dynamics exhibit chaotic behavior for
some parameter values. The equation is:������ � ��� �*����� �

@�� � ���*�!�"� � ��#$� � �8�
1Strictly speaking, this is not a membership function

since it is not bounded. However, we can apply, for in-
stance, a sigmoid function to make it bounded.

The parameters chosen were
� � H �&%

,
# � H � @ , and' � @ H . This set of parameters are the general choice

in the literature [3, 1]. The parameter
�

controls the
complexity of the series dynamics. For the first exper-
iment

� �)( H
was used to generate the normal sam-

ples.

The equation is solved numerically using fourth-
order Runge-Kutta method (included in Matlab) with
an integration step of 0.02, a sampling rate of 12, and
an initial value vector with all its elements equal to
1.1. The normal samples were produced from a time
series with 500 elements generated using

� �*( H
and

discarding the first 1000 samples to eliminate the ini-
tial value effect. The resulting time series is shown in
Figure 3.a.
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(b) time series with an anomaly

Figure 3: Mackey-Glass series: (a) normal, using
���

( H
, (b) with an anomaly,

�)� @,+ from 300 to 400.

The features are extracted using a sliding overlapping
window of size n. If the time series has the values:� - �.�0/ ���1�2� �3� 9 , the feature set generated from it will be
the following:



� � - � �0/ � �2�1� � 5 �� � /�� � � � �2�1� � 5�� -��
...
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So, from a time series with m elements and using a
sliding window of size n, we can generate (m-n+1)
samples.

In order to perform the testing, we need new normal
and abnormal samples. For abnormal samples, we
change the parameter of the series (

�
). For the prelim-

inary experiments, we used
�

= 17 (as used in [3, 1]).
Figure 3.b shows an example of a time series with an
abnormal segment (time 300 to 400) where the param-
eter

�
was changed from 30 to 17.

5 Experimental Results

5.1 Experiments using SOM technique

To perform SOM experiments, we used a tool
that is available on Internet (GeneCluster [19],
http://www-genome.wi.mit.edu/cancer/
software/software.html). This tool is primarily
used to cluster gene expression information, how-
ever, it can be applied to any kind of data. We found
the visual representation of clusters is very useful for
our purpose.

For this set of experiments, we used the normal
Mackey-Glass data, as plotted in Figure 3, for train-
ing. A window size of 4 was used to generate the fea-
ture vectors. Accordingly, a total number of 497 pat-
terns were generated. The clusters generated by the
application using an output grid of 6 � 4 neurons are
shown in Figure 4. Each box shows a cluster centroid
(middle curve) as well as the variations for each fea-
ture: maximum value (upper curve) and minimum
value (lower curve) in the cluster. The number of
samples on each cluster is also presented.

We also tested output grids with 3 � 4, and 8 � 8 neu-
rons. In all cases, the SOM algorithm was run for 100
iterations using Gaussian neighborhood. The initial
and final learning rate were 0.1 and 0.005 respectively.
The initial 	 value was 5 and the final was 0.2.

During testing, we applied the technique described
on section 3 using the data in Figure 3.b. Fig-
ure 5 shows the anomaly detection function (i.e.���B���	�������������C�D���

) for three different distance measures
using an SOM with an 8 � 8 output layer configura-
tion.

Figure 4: Clustering of the normal data produced by
GeneCluster [19] (columns in right hand side are not
relevant to our experiments).

It is clear that the anomaly detection based on Eu-
clidean distance (Figure 5.a) is not able to detect the
anomalous patterns. The normalized distance does
not improve either. The plots corresponding to 
 �
Minkowsky distance show an increase on the aver-
age value between the time 300 and 400 which corre-
sponds to the anomalous section. This indicates that
this distance measure is able to detect the anomalous
patterns.

It is to be noted that the change on the number of out-
put neurons reflected on the shape of the function,
i.e. the more neurons on the output, the smoother the
function. This is explained by the fact that more neu-
rons imply more clusters which can approximate the
normal set better.

The Euclidean distance and the normalized distance
assume that the clusters are spherical, that is, the dis-
tribution is the same for all directions. It seems that
this is not the case, as it is evidenced in the poor per-
formance of these distance measures. The 
 � dis-
tance eliminates, to some degree, the interference be-
tween features and this seems to be an advantage for
this specific problem. However, its main drawback is
that it does not take into account the shape of the clus-
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(c) ��� Minkowsky

Figure 5: Anomaly function (
�������	�������������������

) gener-
ated using the SOM-based technique and applied to
the testing set. The net has an 8 � 8 output layer. Each
graph represents a different distance measure: (a) Eu-
clidean distance, (b)Normalized distance, and (c) 
 �
Minkowsky distance.

ter. Our hypothesis is that a distance measure such as
Mahalanobis distance will perform much better, since
it can represent ellipsoid clusters.

The anomaly function presents many peaks; in order
to smooth it, a moving average technique was ap-
plied. The new output

����
is calculated from the old

output
���

using the following formula:
���� �	��
(
� - � � � (�

where s is the smoothing factor and indicates the size
of the averaging window. Figure 6 shows the re-
sults of the smoothing process for the anomaly func-
tion corresponding to 
 � Minkowsky distance using� � @ H . It is evident from the figure, how the smooth-
ing process makes a clear boundary between the nor-
mal and the abnormal sections. As it was discussed
previously, the contrast is bigger for the SOM with
more output neurons (8 � 8). A quantitative compar-
ison of these anomaly functions is performed in sec-
tion 5.3.

5.2 Experiments using Neuro-Immune anomaly
detection technique

The data in Figure 3 was used to generate the train-
ing set using a window size of 4. This generated 497
normal samples that were used as input for the NSA
which generated 400 abnormal samples. The normal
samples were assigned an output value of 0.0 and the
abnormal samples an output value of 1.0. For the clas-
sification phase, a multilayer neural network with 4
inputs, and one output neuron was used. We tested
three different MLPs with 6, 12, and 16 hidden neu-
rons respectively.

The training algorithm was back-propagation with
momentum using the following parameters: learning
rate 0.2, momentum 0.9, number of epochs 4000. Fig-
ure 7 shows the output of the a MLP with 16 hidden
units when applied to the testing set.

The results show that the trained MLPs are able to
detect the anomalous segment present on the testing
set. The output from the simplest MLP (six hidden
neurons) shows more spikes. A possible explanation
is that a larger number of hidden neurons allows to
represent more details of the normal subspace. How-
ever, the smoothing process is able to eliminate most
of them.

5.3 Comparison of the two techniques

In order to compare the two techniques (SOM and
neuro-immune) it is necessary to define a measure of



0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e(
s,

N
or

m
al

) 
(M

ax
 s

m
oo

th
ed

)

Time

(a)

0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e(
s,

N
or

m
al

) 
(M

ax
 s

m
oo

th
ed

)

Time

(b)

0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e(
s,

N
or

m
al

) 
(M

ax
 s

m
oo

th
ed

)

Time

(c)

Figure 6: 

� Minkowsky distance anomaly function
smoothed using a moving average with parameter� � @ H . The different plots represent different topolo-
gies: (a) 3 � 4 neurons, (b) 6 � 4 neurons, and (c) 8 � 8
neurons.
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(a) raw output (without using the smooth-
ing function)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

N
eu

ra
l n

et
w

or
k 

ou
tp

ut
 (

sm
oo

th
ed

)

Time

(b) smoothed output using ��� ���

Figure 7: Neural network output for the testing set
using 16 hidden neurons (neuro-immune technique).

accuracy for the classification. The idea is to calcu-
late the number of true positives (TP, anomalous el-
ements identified as anomalous), true negatives (TN,
normal elements identified as normal), false positives
(FP, normal elements identified as anomalous) and
false negatives (FN, anomalous elements identified as
normal). These values are used to calculate two mea-
sures of effectiveness:

Detection rate
� ���
��� �
	 �

False alarm rate
� 	 �
� � �
	 �

In general, we want a very high detection rate with
a very low false alarm. However, there is a trade-off
between these two measures. This trade-off can be
shown using ROC (receiver operating characteristics)
curves [18]. The sensitivity of the system is controlled



by a threshold that determines when a new sample is
normal or abnormal. By varying this threshold, we
can obtain different values for the detection and false
alarm rates which are used to plot ROC curves.

Figure 8 shows ROC curves for SOM-based and
neuro-immune anomaly detection techniques. In all
cases, it is clear that the smoothing parameter (s)
improves the classification accuracy. However, the
SOM-based technique seems to be more sensitive
to its value. This is explained by the fact that the
anomaly detection function generated by this method
is not as smooth as the one generated by the neuro-
immune method.

For the two methods the most complex networks gen-
erate better results. As it was explained previously, a
most complex network allows a more detailed mod-
eling of the normal subspace.

The best anomaly detection functions from the two
methods are shown in Figure 9. There is no clear win-
ner. The anomaly detection function generated by the
SOM method is able to produce a very good detec-
tion rate with a low false alarm rate. But, if a small
increase on the false alarm rate is allowed, the neuro-
immune method is able to produce a better detection
rate than the SOM method.

An important issue on anomaly detection is how to
find a good threshold value that produces a detection
rate with an acceptable false alarm rate. This could
be very difficult if the anomaly detection function
is very sensitive to this threshold. Figure 10 shows
how the detection and false alarm rates change when
the threshold is modified. For the neuro-immune
method, the detection rate increases gradually as the
threshold increases. The false alarm rate only in-
creases at the end, producing a good range of thresh-
old values where it is possible to have a high detec-
tion rate keeping the false alarm rate low. In the case
of the SOM-based method, the detection rate changes
suddenly with a small change on the threshold. The
range of threshold values that can produce a good de-
tection rate with a low false alarm rate is very small.
This means, that the threshold has to be chosen very
carefully and that a small variation can easily deteri-
orate the performance of the anomaly detection sys-
tem.

6 Conclusions

In this paper, we compared two different approaches
for anomaly detection: one uses a neuro-immune
technique and the other uses self-organizing maps
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Figure 8: ROC curves for different values of the
threshold parameter (

�
).

(SOM). Their performances, from the point of view of
classification accuracy, appears to be very similar. In
both cases, the smoothing process (moving average)
improved the classification performance significantly.

As it was expected, more complex neural networks
had better performance; SOM networks were, in gen-
eral, more complex than the feed-forward networks
(MLP) used on the neuro-immune technique that ex-
hibit similar performance. For instance, two net-
works that are compared (shown in figure 10) have� @ ��� � � @�� � @�� ��� + weights (neuro-immune) and
� � ���

� %�� � weights (SOM) needed to be trained.

In general, the anomaly detection functions gener-
ated by the neuro-immune method were relatively
smoother. This represents a clear advantage as they
are less sensitive to changes on the threshold. How-
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Figure 9: Best anomaly detection functions of each
method.

ever, there is room for improvement for the SOM
method too. For instance, a distance measure that
takes into account the shape of the cluster (like Ma-
halanobis distance) will probably improve the per-
formance of the SOM method. So, it is necessary to
test new distance measures and perform additional
experiments using wide variety of data sets in order
to make a fair comparison.
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tIn this paper, we propose an algorithm tosolve multiobje
tive optimization problems(either 
onstrained or un
onstrained) usingthe 
lonal sele
tion prin
iple. Our approa
his 
ompared with respe
t to another algo-rithm that is representative of the state-of-the-art in evolutionary multiobje
tive opti-mization. For our 
omparative study, twometri
s are adopted and graphi
al 
ompar-isons with respe
t to the true Pareto frontof ea
h problem are also in
luded. Resultsindi
ate that the proposed approa
h is verypromising.1 Introdu
tionThe immune system is one of the most important bio-logi
al me
hanisms humans possess sin
e our own lifedepends on it. In re
ent years, several resear
hers havedeveloped 
omputational models of the immune sys-tem that attempt to 
apture some of their most re-markable features su
h as its self-organizing 
apability[11, 9℄.From the information pro
essing perspe
tive, the im-mune system 
an be seen as a parallel and distributedadaptive system [10, 3℄. It is 
apable of learning, ituses memory and is able of asso
iative retrieval of in-formation in re
ognition and 
lassi�
ation tasks. Par-ti
ularly, it learns to re
ognize patterns, it rememberspatterns that it has been shown in the past and itsglobal behavior is an emergent property of many lo
alintera
tions [3℄. All these features of the immune sys-tem provide, in 
onsequen
e, great robustness, faulttoleran
e, dynamism and adaptability [9℄. These arethe properties of the immune system that mainly at-tra
t resear
hers to try to emulate it in a 
omputer.

In this paper, we propose an approa
h to solve multi-obje
tive optimization problems (either with or with-out 
onstraints) based on the 
lonal sele
tion prin
iple.2 The Immune SystemThe main goal of the immune system is to prote
t thehuman body from the atta
k of foreign (harmful) or-ganisms. The immune system is 
apable of distinguish-ing between the normal 
omponents of our organismand the foreign material that 
an 
ause us harm (e.g.,ba
teria). These foreign organisms are 
alled antigens.The mole
ules 
alled antibodies play the main role onthe immune system response. The immune response isspe
i�
 to a 
ertain foreign organism (antigen). Whenan antigen is dete
ted, those antibodies that best re
-ognize an antigen will proliferate by 
loning. Thispro

ess is 
alled 
lonal sele
tion prin
iple [4℄.The new 
loned 
ells undergo high rate mutations orhypermutation in order to in
rease their re
eptor pop-ulation (
alled repertoire). These mutations experi-en
ed by the 
lones are proportional to their aÆnityto the antigen.The highest aÆnity antibodies experiment the lowestmutation rates, whereas the lowest aÆnity antibodieshave high mutation rates. After this mutation pro
essends, some 
lones 
ould be dangerous for the body andshould therefore be eliminated.After these 
lonation and hypermutation pro
esses �n-ish, the immune system has improved the antibodies'aÆnity, whi
h results on the antigen neutralizationand elimination.At this point, the immune system must return toits normal 
onditions, eliminating the ex
edent 
ells.However, some 
ells remain 
ir
ulating throughout thebody as memory 
ells. When the immune system islater atta
ked by the same type of antigen (or a sim-



ilar one), these memory 
ells are a
tivated, present-ing a better and more eÆ
ient response. This se
onden
ounter with the same antigen is 
alled se
ondaryresponse.The algorithm proposed in this paper is based on the
lonal sele
tion prin
iple previously des
ribed.3 Multiobje
tive OptimizationMultiobje
tive optimization (also 
alled multi
riteriaoptimization, multiperforman
e or ve
tor optimiza-tion) 
an be de�ned as the problem of �nding [15℄:a ve
tor of de
ision variables whi
h satis�es
onstraints and optimizes a ve
tor fun
tionwhose elements represent the obje
tive fun
-tions. These fun
tions form a mathemati
aldes
ription of performan
e 
riteria whi
h areusually in 
on
i
t with ea
h other. Hen
e,the term \optimize" means �nding su
h asolution whi
h would give the values of allthe obje
tive fun
tions a

eptable to the de-signer.Formally, we 
an state the general multiobje
tive op-timization problem (MOP) as follows:De�nition 1 (General MOP): Find the ve
tor~x� = [x�1; x�2; : : : ; x�n℄T whi
h will satisfy the m inequal-ity 
onstraints:gi(~x) � 0 i = 1; 2; : : : ;m (1)the p equality 
onstraintshi(~x) = 0 i = 1; 2; : : : ; p (2)and optimizes the ve
tor fun
tion~f(~x) = [f1(~x); f2(~x); : : : ; fk(~x)℄T (3)where ~x = [x1; x2; : : : ; xn℄T is the ve
tor of de
isionvariables. 2In other words, we wish to determine from among theset F of all numbers whi
h satisfy (1) and (2) the par-ti
ular set x�1; x�2; : : : ; x�n whi
h yields the optimum val-ues of all the k obje
tive fun
tions of the problem.Another important 
on
ept is that of Pareto optimal-ity, whi
h was stated by Vilfredo Pareto in the XIX


entury [16℄, and 
onstitutes by itself the origin of re-sear
h in multiobje
tive optimization:De�nition 2 (Pareto Optimality:): We say that~x� 2 F , is Pareto optimal if for every ~x 2 
 andI = f1; 2; : : : ; kg either,^i 2 I (fi(~x) = fi(~x�)) (4)or, there is at least one i 2 I su
h that (assumingmaximization) fi(~x) � fi(~x�) (5)2In words, this de�nition says that ~x� is Pareto optimalif there exists no feasible ve
tor ~x whi
h would in
reasesome 
riterion without 
ausing a simultaneous de
re-ment in at least one other 
riterion.Pareto optimal solutions are also termed non-inferior,admissible, or eÆ
ient solutions [2℄; their 
orrespond-ing ve
tors are termed nondominated. These solutionsmay have no 
learly apparent relationship besides theirmembership in the Pareto optimal set. This is the setof all solutions whose 
orresponding ve
tors are non-dominated with respe
t to all other 
omparison ve
-tors. When plotted in obje
tive spa
e, the nondom-inated ve
tors are 
olle
tively known as the Paretofront.4 The Proposed Approa
hAs indi
ated before, our algorithm is based on the
lonal sele
tion prin
iple, modeling the fa
t that onlythe highest aÆnity antibodies to the antigens will pro-liferate. Our algorithm uses the 
on
ept of Paretodominan
e to generate nondominated ve
tors. Also,an external (or se
ondary) memory is used to storenondominated ve
tors found along the evolutionarypro
ess, in order to move towards the true Pareto frontover time (this 
an be seen as a form of elitism in evo-lutionary multiobje
tive optimization [2℄).4.1 The AlgorithmOur algorithm is the following:1. Generate randomly the initial population.2. Initialize the se
ondary memory so that it isempty.



3. Determine for ea
h individual in the population,if it is (Pareto) dominated or not. For 
onstrainedproblems, determine if an individual is feasible ornot.4. Split the population into antigens and antibod-ies. The division 
riterion is Pareto dominan
e(i.e., nondominated individuals are the antigensand dominated individuals are the antibodies).In 
onstrained problems, feasible individuals areantigens, too. Note that either of the two 
riteria(Pareto dominan
e or feasibility) is suÆ
ient foran individual to be 
onsidered an antigen. How-ever, to guide the sear
h properly, we distinguishbetween \very good" (or ideal) antigens and thosewhi
h are only \good". For that sake, we assigna weight (w) to ea
h antigen a

ording to the fol-lowing rules:� w = 4 for nondominated and feasible anti-gens (the best ones).� w = 3 for nondominated antigens (even ifinfeasible).� w = 2 for feasible antigens (even if they aredominated).Note that in the previous rules, Pareto dominan
eis given more importan
e than feasibility. Thesevalues were arbitrarily adopted to give more orless importan
e to ea
h of the 
ases previouslyindi
ated. Note however, that the same valuesare adopted in all the examples presented in thispaper. Also, note that in un
onstrained problems,all nondominated individuals are made antigenswith a w = 2.5. Copy the antigens (with w = 4 for 
onstrainedproblems and with w = 2 for un
onstrained prob-lems) to the se
ondary memory.6. Sele
t an antigen (regardless of its weight) at ran-dom.7. Assign a �tness value to ea
h of the antibodies a
-
ording to their mat
hing value (Z) with respe
tto the antigen (randomly) 
hosen from the previ-ous step (see Figure 1). Note that a new antigenis randomly sele
ted for ea
h antibody.8. Sele
t the Q �ttest antibodies from the antibodiespool where the �tness 
riterion is de�ned by thevalue of Z.9. Create a number N of 
opies of the antibodiessele
ted.

  

Matches:    5

Antigen:       0   1   1   1   1   0   0   1   0

Antibody:     0   1   1   0   0   1   1   1   0  

Length:              3                                 2
W W

Match value:  5   +   3   +   2  =  Z Figure 1: Mat
hing measure between an antigen andan antibody. The weights w are used to in
rease thevalue of Z when an antibody mat
hes a highly desir-able antigen (i.e., nondominated and feasible).10. Assign a mutation rate (MR) to ea
h 
lone, a
-
ording to their similarity with an antigen ran-domly 
hosen. The higher the similarity the lowerthe mutation rate, and vi
eversa.11. Apply mutation rate MR to ea
h 
lone.12. The new population is formed by the union of theoriginal antibodies and their 
lones.13. The population size is returned to its origi-nal value, allowing the nondominated individuals(and the feasible ones if dealing with a 
onstrainedproblem) survive.14. Go ba
k to step 3 until 
onvergen
e o

urs or af-ter rea
hing a 
ertain (predetermined) number ofiterations.The antigen-antibody mat
hing measure (Z) adoptedin this paper is adapted from Farmer's proposal [7℄.This mat
hing measure 
ounts the number of mat
hingbits of the two strings 
ompared as well as the numberof 
onse
utive mat
hing bits. For example, if we havethree 
ontiguous similarities on the strings we add avalue of 3 raised to its w value to the total mat
hingmeasure (see �gure 1).Note that this algorithm is not really a geneti
 algo-rithm sin
e no sexual re
ombination takes pla
e. In-stead, only a 
lonation of individuals is used to gener-ate the new population of the algorithm.4.2 Se
ondary MemoryWe use a se
ondary or external memory as an eli-tist me
hanism in order to maintain the best solutionsfound along the pro
ess. The individuals stored in thismemory are all nondominated not only with respe
tto ea
h other but also with respe
t to all of the pre-vious individuals who attempted to enter the external
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ondarymemorymemory. Therefore, the external memory stores ourapproximation to the true Pareto front of the prob-lem.In order to enfor
e a uniform distribution of nondom-inated solutions that 
over the entire Pareto frontof a problem, we use the adaptive grid proposed byKnowles and Corne [13℄ (see Figure 2).Ideally, the size of the external memory should be in�-nite. However, sin
e this is not possible in pra
ti
e, wemust set a limit to the number of nondominated solu-tions that we want to store in this se
ondary memory.By enfor
ing this limit, our external memory will getfull at some point even if there are more nondominatedindividuals wishing to enter. When this happens, weuse an additional 
riterion to allow a nondominated in-dividual to enter the external memory: region density(i.e., individuals belonging to less densely populatedregions are given preferen
e).The algorithm for the implementation of the adaptivegrid is the following:1. Divide obje
tive fun
tion spa
e a

ording to thenumber of subdivisions set by the user.2. For ea
h individual in the external memory, de-termine the 
ell to whi
h it belongs.3. If the external memory is full, then determinewhi
h is the most 
rowded 
ell.4. To determine if a 
ertain antigen is allowed toenter the external memory, do the following:� If it belongs to the most 
rowded 
ell, then itis not allowed to enter.� Otherwise, the individual is allowed to en-ter. For that sake, we eliminate a (randomly


hosen) individual that belongs to the most
rowded 
ell in order to have an available slotfor the antigen.5 ExperimentsIn order to validate our approa
h, we used severaltest fun
tions reported in the standard evolutionarymultiobje
tive optimization literature [5, 20, 2℄. Inea
h 
ase, we generated the true Pareto front of theproblem (i.e., the solution that we wished to a
hieve)by enumeration using parallel pro
essing te
hniques.Then, we plotted the Pareto front generated by ouralgorithm, whi
h we 
all the multiobje
tive immunesystem algorithm (MISA). The results indi
ated be-low were found using the following parameters: Max-imum number of iterations = 150, population size =70, 
lonation rate = 0.8, number of 
lones = 15, sizeof the external memory = 100. The above parametersprodu
e a total of 138,000 �tness fun
tion evaluations.MISA was 
ompared against the mi
ro-geneti
 algo-rithm for multiobje
tive optimization, whi
h was re-
ently proposed [1℄. This algorithm is representativeof the state-of-the-art in evolutionary multiobje
tiveoptimization and has been found to produ
e similaror better results than the NSGA-II [6℄ and PAES [13℄.To allow a fair 
omparison, the mi
ro-GA performedthe same number of �tness fun
tion evaluations asMISA.Despite the graphi
al 
omparisons performed, the twofollowing metri
s were adopted to 
ompare our results:� Two Set Coverage (SC): This metri
 was pro-posed in [22℄, and it 
an be termed relative 
ov-erage 
omparison of two sets. Consider X 0; X 00 �X 0 as two sets of phenotype de
ision ve
tors.SC is de�ned as the mapping of the order pair(X 0; X 00) to the interval [0; 1℄.SC(X 0; X 00) , jfa00�X 00; 9a0�X 0 : a0 � a00gjjX 00j (6)If all points in X 0 dominate or are equal to allpoints in X 00, then by de�nition SC = 1. SC = 0implies the opposite. In general, SC(X 0; X 00) andSC(X 00; X 0) both have to be 
onsidered due toset interse
tions not being empty. Of 
ourse, thismetri
 
an be used for both spa
es (obje
tivefun
tion or de
ision variable spa
e), but in this
ase we applied it in obje
tive fun
tion spa
e. Theadvantage of this metri
 is that it is easy to 
al-
ulate and provides a relative 
omparison based



upon dominan
e numbers between generations oralgorithms.� Spa
ing (S): This metri
 was proposed by S
hott[18℄ as a way of measuring the range (distan
e)varian
e of neighboring ve
tors in the Pareto frontknown. This metri
 is de�ned as:S ,vuut 1n� 1 nXi=1(d� di)2 ; (7)where di = minj(j f i1(~x) � f j1 (~x) j + j f i2(~x) �f j2 (~x) j), i; j = 1; : : : ; n, d is the mean of all di,and n is the number of ve
tors in the Pareto frontfound by the algorithm being evaluated. A valueof zero for this metri
 indi
ates all the nondomi-nated solutions found are equidistantly spa
ed.The parameters used by the mi
ro-GA for the exper-iments reported below are the following: maximumnumber of generations = 8400, population size = 4,number of grid subdivisions = 25, memory size = 50,
rossover rate = 0.8, number of iterations to a
hievenominal 
onvergen
e = 4, size of the external mem-ory = 100. We the previous parameters, the mi
ro-GA performs a total of 138,000 �tness fun
tion evalu-ations.Example 1Minimize: F = (f1(x; y); f2(x; y)), wheref1(x; y) = x;f2(x; y) = (1 + 10y) �[1� ( x1 + 10y )� � x1 + 10y sin(2�qx)℄and 0 � x; y � 1, q = 4, � = 2.The 
omparison of results between the true Paretofront of this example and the Pareto front produ
edby MISA is shown in Figure 3. Note that the Paretofront is dis
onne
ted (it 
onsists of four Pareto 
urves).In this 
ase: SC(MISA;mi
ro � GA) = 0:304 andSC(mi
ro�GA;MISA) = 0:29. This indi
ates a verysimilar behavior from both algorithms and we 
an saythat there is a tie among the �nal nondominated so-lutions produ
ed by the two algorithms. In terms ofspa
ing, the results are presented in Table 1. Notethat the average results of MISA are better than thoseof the mi
ro-GA.

Table 1: Spa
ing for example 1best average worst std.dev.MISA 0.008853 0.114692 0.62904 0.175955mi
ro-GA 0.007773 0.177104 0.991838 0.319061Table 2: Spa
ing for example 2best average worst std.dev.MISA 0.008853 0.107427 0.209062 0.054843mi
ro-GA 0.04119 0.1446 1.197458 0.253813Example 2Our se
ond example is a two-obje
tive optimizationproblem proposed by S
ha�er [17℄ that has been usedby several resear
hers [19℄:Minimize f1(x) = 8>><>>: �x if x � 1�2 + x if 1 < x � 34� x if 3 < x � 4�4 + x if x > 4 (8)
Minimize f2(x) = (x� 5)2 (9)and �5 � x � 10.The 
omparison of results between the true Paretofront of this example and the Pareto front pro-du
ed by MISA is shown in Figure 4. In this 
ase:SC(MISA;mi
ro � GA) = 0:487 and SC(mi
ro �GA;MISA) = 0:56. As in the previous example, thesevalues indi
ate a very similar behavior from both al-gorithms and we 
an say that there is a tie among the�nal nondominated solutions produ
ed by the two al-gorithms. In terms of spa
ing, the results are shown inTable 2. Note again that the average results of MISAare better than those of the mi
ro-GA.Example 3The third example is the three-obje
tive fun
tion prob-lem proposed by Viennet [21℄:Minimize: F = (f1(x; y); f2(x; y); f3(x; y))
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where:f1(x; y) = (x � 2)22 + (y + 1)213 + 3;f2(x; y) = (x + y � 3)2175 + (2y � x)217 � 13;f3(x; y) = (3x� 2y + 4)28 + (x � y + 1)227+15and: �4 � x; y � 4, y < �4x+ 4, x > �1, y > x� 2.The 
omparison of results between the true Paretofront of this example and the Pareto front pro-du
ed by MISA is shown in Figure 5. In this 
ase:SC(MISA;mi
ro � GA) = 0:673 and SC(mi
ro �GA;MISA) = 0:605. As in the previous example,these values indi
ate a very similar behavior from bothalgorithms and we 
an say that there is a tie amongthe �nal nondominated solutions produ
ed by the twoalgorithms. In terms of spa
ing, the results are shownin Table 3. Note that the average results of the mi
ro-GA are better than those of MISA. In this 
ase, MISAhad a poorer performan
e in terms of uniform distri-bution than the mi
ro-GA.Example 4The fourth example was proposed by Kita [12℄:Maximize F = (f1(x; y); f2(x; y))where: f1(x; y) = �x2 + y;f2(x; y) = 12x+ y + 1x; y � 0, 0 � 16x + y � 132 , 0 � 12x + y � 152 , 0 �5x+ y � 30.The 
omparison of results between the true Paretofront of this example and the Pareto front pro-du
ed by MISA is shown in Figure 6. In this 
ase:SC(MISA;mi
ro � GA) = 1:00 and SC(mi
ro �GA;MISA) = 0:145. In this 
ase, MISA produ
ed so-lutions that 
learly dominated or were equal to thosegenerated by the mi
ro-GA (therefore the value of 1.0).This 
learly indi
ates a better behavior of MISA. Interms of spa
ing, the results are shown in Table 4. Interms of this metri
, the average results of the mi
ro-GA are better than those of MISA. Note however, thatsin
e the solutions generated by the mi
ro-GA are 
ov-ered (i.e., dominated) by those produ
ed by MISA, the

Table 4: Spa
ing for example 4best average worst std.dev.MISA 0.141532 0.518706 1.145541 0.349627mi
ro-GA 0.039568 0.115826 0.830159 0.180039fa
t that these solutions have a more uniform distri-bution is less relevant, sin
e these solutions are poorerthan those generated by MISA.Example 5Our �fth example is a two-obje
tive optimizationproblem de�ned by Kursawe [14℄:Minimize f1(~x) = n�1Xi=1 ��10 exp��0:2qx2i + x2i+1��(10)Minimize f2(~x) = nXi=1 �jxij0:8 + 5 sin(xi)3� (11)where: �5 � x1; x2; x3 � 5 (12)The 
omparison of results between the true Paretofront of this example and the Pareto front pro-du
ed by MISA is shown in Figure 7. In this 
ase:SC(MISA;mi
ro � GA) = 0:3490 and SC(mi
ro �GA;MISA) = 0:96. In this 
ase, the mi
ro-GA pro-du
ed solutions that 
learly dominated or were equalto those generated by MISA (therefore the value very
lose to 1.0). This 
learly indi
ates a better behav-ior of the mi
ro-GA. In terms of spa
ing, the resultsare shown in Table 5. Note that the average resultsof MISA are better than those of the mi
ro-GA. Notehowever, that sin
e the solutions generated by MISAare 
overed (i.e., dominated) by those produ
ed by themi
ro-GA, the fa
t that these solutions have a moreuniform distribution is less relevant, sin
e these solu-tions are poorer than those generated by the mi
ro-GA.Summarizing, we 
an see that our approa
h has a very
ompetitive behavior with respe
t to the mi
ro-GAwhen dealing with un
onstrained test fun
tions. How-ever, in 
onstrained test fun
tions is not as 
ompeti-tive (in general), but the results are still a

eptable as
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an be seen in the 
orresponding graphs. Nevertheless,further improvements are required so that MISA 
anin
orporate 
onstraints more eÆ
iently into its �tnessfun
tion.6 Con
lusions and Future WorkWe have presented a new multiobje
tive optimizationalgorithm based on the 
lonal sele
tion prin
iple. Theapproa
h seems promising and is able to produ
e re-sults similar or better than those generated by an al-gorithm that represents the state-of-the-art in evolu-tionary multiobje
tive optimization when dealing withun
onstrained test fun
tions. However, the algorithmstill requires further improvements so that it 
an han-dle 
onstraints more eÆ
iently. Su
h work is 
urrentlyunder way.Additionally, we will be performing dire
t 
omparisonswith other evolutionary multiobje
tive optimizationte
hniques su
h as PAES [13℄, the NSGA-II [6℄ andMOGA [8℄ with elitism. In su
h 
omparative study,additional metri
s will be implemented.Our goal is to produ
e a highly 
ompetitive algorithm(based on the arti�
ial immune system) that repre-sents a viable alternative to solve multiobje
tive opti-mization problems of any kind (either 
onstrained orun
onstrained).

A
knowledgementsWe thank the 
omments of the anonymous reviewersthat greatly helped us to improve the 
ontents of thispaper. The �rst author gratefully a
knowledges sup-port from CONACyT through proje
t 34201-A. These
ond author a
knowledges support from CONACyTthrough a s
holarship to pursue graduate studies atthe Computer S
ien
e Se
tion of the Ele
tri
al Engi-neering Department at CINVESTAV-IPN.Referen
es[1℄ Carlos A. Coello Coello and Gregorio Tos
anoPulido. Multiobje
tive Optimization using aMi
ro-Geneti
 Algorithm. In Lee Spe
tor, Erik D.Goodman, Annie Wu, W.B. Langdon, Hans-Mi
hael Voigt, Mitsuo Gen, Sandip Sen, Mar
oDorigo, Shahram Pezeshk, Max H. Garzon, andEdmund Burke, editors, Pro
eedings of the Ge-neti
 and Evolutionary Computation Conferen
e(GECCO'2001), pages 274{282, San Fran
is
o,California, 2001. Morgan Kaufmann Publishers.[2℄ Carlos A. Coello Coello, David A. Van Veld-huizen, and Gary B. Lamont. Evolutionary Al-gorithms for Solving Multi-Obje
tive Problems.Kluwer A
ademi
 Publishers, New York, May2002. ISBN 0-3064-6762-3.[3℄ Dipankar Dasgupta, editor. Arti�
ial ImmuneSystems and Their Appli
ations. Springer-Verlag,Berlin, 1999.



[4℄ Leandro Nunes de Castro and Fernando Jos�e VonZuben. Arti�
ial Immune Systems: Part I - Ba-si
 Theory and Appli
ations. Te
hni
al ReportTR-DCA 01/99, FEEC/UNICAMP, Brazil, De-
ember 1999.[5℄ Kalyanmoy Deb. Multi-Obje
tive Geneti
 Al-gorithms: Problem DiÆ
ulties and Constru
tionof Test Problems. Evolutionary Computation,7(3):205{230, Fall 1999.[6℄ Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal,and T. Meyarivan. A Fast and Elitist Multiobje
-tive Geneti
 Algorithm: NSGA{II. IEEE Trans-a
tions on Evolutionary Computation, 6(2):182{197, April 2002.[7℄ J. D. Farmer, N. H. Pa
kard, and A. S. Perelson.The Immune System, Adaptation, and Ma
hineLearning. Physi
a D, 22:187{204, 1986.[8℄ Carlos M. Fonse
a and Peter J. Fleming. Ge-neti
 Algorithms for Multiobje
tive Optimiza-tion: Formulation, Dis
ussion and Generaliza-tion. In Stephanie Forrest, editor, Pro
eedings ofthe Fifth International Conferen
e on Geneti
 Al-gorithms, pages 416{423, San Mateo, California,1993. Morgan Kau�man Publishers.[9℄ Stephanie Forrest and Steven A. Hofmeyr. Im-munology as Information Pro
essing. In L.A.Segel and I. Cohen, editors, Design Prin
iples forthe Immune System and Other Distributed Au-tonomous Systems, Santa Fe Institute Studies inthe S
ien
es of Complexity, pages 361{387. Ox-ford University Press, 2000.[10℄ Steven A. Frank. The Design of Natural and Ar-ti�
ial Adaptive Systems. A
ademi
 Press, NewYork, 1996.[11℄ John E. Hunt and Denise E. Cooke. An adap-tative, distributed learning systems based on theimmune system. In Pro
eedings of the IEEE In-ternational Conferen
e on Systems, Man and Cy-bernati
s, pages 2494{2499, 1995.[12℄ Hajime Kita, Yasuyuki Yabumoto, Naoki Mori,and Yoshikazu Nishikawa. Multi-Obje
tive Op-timization by Means of the Thermodynami
alGeneti
 Algorithm. In Hans-Mi
hael Voigt,Werner Ebeling, Ingo Re
henberg, and Hans-Paul S
hwefel, editors, Parallel Problem Solvingfrom Nature|PPSN IV, Le
ture Notes in Com-puter S
ien
e, pages 504{512, Berlin, Germany,September 1996. Springer-Verlag.

[13℄ Joshua D. Knowles and David W. Corne. Ap-proximating the Nondominated Front Using thePareto Ar
hived Evolution Strategy. Evolution-ary Computation, 8(2):149{172, 2000.[14℄ Frank Kursawe. A Variant of Evolution Strategiesfor Ve
tor Optimization. In H. P. S
hwefel andR. M�anner, editors, Parallel Problem Solving fromNature. 1st Workshop, PPSN I, volume 496 ofLe
ture Notes in Computer S
ien
e, pages 193{197, Berlin, Germany, o
t 1991. Springer-Verlag.[15℄ Andrzej Osy
zka. Multi
riteria optimization forengineering design. In John S. Gero, editor,Design Optimization, pages 193{227. A
ademi
Press, 1985.[16℄ Vilfredo Pareto. Cours D'E
onomie Politique,volume I and II. F. Rouge, Lausanne, 1896.[17℄ J. David S
ha�er. Multiple Obje
tive Optimiza-tion with Ve
tor Evaluated Geneti
 Algorithms.PhD thesis, Vanderbilt University, 1984.[18℄ Jason R. S
hott. Fault Tolerant Design UsingSingle and Multi
riteria Geneti
 Algorithm Op-timization. Master's thesis, Department of Aero-nauti
s and Astronauti
s, Massa
husetts Instituteof Te
hnology, Cambridge, Massa
husetts, May1995.[19℄ N. Srinivas and Kalyanmoy Deb. Multiobje
-tive Optimization Using Nondominated Sorting inGeneti
 Algorithms. Evolutionary Computation,2(3):221{248, Fall 1994.[20℄ David A. Van Veldhuizen and Gary B. Lam-ont. MOEA Test Suite Generation, Design &Use. In Annie S. Wu, editor, Pro
eedings ofthe 1999 Geneti
 and Evolutionary ComputationConferen
e. Workshop Program, pages 113{114,Orlando, Florida, July 1999.[21℄ R�emy Viennet, Christian Fontiex, and Ivan Mar
.NewMulti
riteria Optimization Method Based onthe Use of a Diploid Geneti
 Algorithm: Exampleof an Industrial Problem. In J. M. Alliot, E. Lut-ton, E. Ronald, M. S
hoenauer, and D. Snyers,editors, Pro
eedings of Arti�
ial Evolution (Euro-pean Conferen
e, sele
ted papers), pages 120{127,Brest, Fran
e, September 1995. Springer-Verlag.[22℄ E
kart Zitzler, Kalyanmoy Deb, and LotharThiele. Comparison of Multiobje
tive Evolution-ary Algorithms: Empiri
al Results. EvolutionaryComputation, 8(2):173{195, Summer 2000.



 

 

Immunocomputing for Complex Interval Objects 

Svetlana P. Sokolova, Ludmila A. Sokolova 

St. Petersburg Institute for Informatics and Automation, 
Russian Academy of Sciences, 

14-line 39, St. Petersburg, 199178, Russia 
 

Abstract 
 
This paper provides a further development of the 
Immunocomputing (IC) approach to the class of 
complex objects with parameter uncertainty of 
the interval type. By using the rules and 
nomenclature of interval mathematics the 
singular value decomposition (SVD) of interval 
matrices, procedures for supervised learning, 
unsupervised learning, classification and 
presentation of the results of research in IC shape 
space have been further developed. This paper 
includes examples of Specific Interval Artificial 
Immune Systems for Surveillance of the Plague 
and Security Systems. 
 

1 Introduction 
A new computational technique, called the Artificial 
Immune Systems (AIS), base on the principles established 
for the immune system, can learn new information, recall 
previously learned information, and perform pattern 
recognition in a highly decentralized fashion. AISs offer 
powerful and robust information processing capabilities 
for solving complex problems. A rigorous mathematical 
basis of AIS based on the biological prototype of immune 
network and the notations of formal protein and formal 
immune network have been proposed (Tarakanov, 2000, 
2001, 2002). These mathematical models have been 
reffered, as formal immune system, or immunocomputing 
(IC). This approach has already been applied in several 
specific problems, such as monitoring of the natural 
plague foci (Tarakanov, Sokolova, 2000), intelligent 
security systems (Sokolova, 2000), etc.  
Development of specific applications has shown the 
exsistence of extensive groups of biological, economical 
and natural factors, for which the measured values of the 
state vectors are often known with interval uncertainty.  
This uncertainty has a non-static nature, or there is not 
enough information in order to refer it to one of the group 
of random processes. The parametric uncertainties are 
characterized by a relationship of the true values of the 
parameters of an object to intervals with known 
boundaries.  Actually the interval model of a system 
mirrors a real situation with the information on values of 

its parameters, when a priori only the boundaries of 
intervals are known. Therefore, using the rules and 
nomenclature of interval mathematics we can represent it 
as mathematical models. The interval space has the 
following mathematical characteristics: the 
incompleteness of the algebraic and the ordinal structure; 
the lack of a rigorous distributivity (Alefeld, 1983, 
Neumaier, 1990, Shary, 1985). These characteristics, 
make the resolution of interval space uncertainties highly 
complicated. Its concept, as a rule, is NP-hard. 
Consequently, computer solutions of inner and outer 
estimation of these concepts in the interval analysis are 
necessary to simplify the process. 
This paper provides a further development of  the 
Immunocomputing approach on the class of objects with 
parameter uncertainty of interval type. The concept of a 
solution set of singular values for an interval matrix, 
singular value decomposition of interval matrices, 
procedures for supervised learning, unsupervised 
learning, classification and presentation of the results of 
research into characteristics of interval objects on shape 
space are developed. This includes examples of Specific 
Interval Artificial Immune Systems for Surveillance the 
Plague and Security Systems. 

2 Mathematical Basis 

2.1 General Approach  
We will use the following notations: Rm, Rm×m – 
correspodingly the space of real vectors U with m 
components and the space of real m×m matrices A. IRm is 
the set of interval vectors [U] 

[U] = [U− , U+] = { U∈ Rm |U− ≤ U ≤ U+} , U− ≤ U+ 

with m components and IRm×m is the set of interval 
matrices 

[A]=[A− , A+] = { A∈ Rm×m |A− ≤ A ≤A+} , A− ≤ A+, 

all inequalities are defined componentwise. Real interval 
coefficients of [A] are:([aij], i,j=1,   ,m) =([aij

−, aij
+]),

  
aij

−, 
aij

+ - lower and upper bounds of intervals. For U ⊆  Rm the 
intervall hull (U) is defined by 

(U) = ∩ {[υ]∈ IRm | U⊆  [υ]} . 



 

 

Let a real valued interval matrix [A]∈ IRm×n is given. We 
shall understand the interval matrix [A] as a set of real 
valued matrices of dimension m × n, for which 

{A| ( ∀ A ∈ [A])}.                 

According to (Tarakanov, 2000) any unit vector U with m 
real-valued components 

U= [u1, …, um]T,  UUT = 1, 

can be considered as a special kind of Formal Peptide 
(FP) with m−1 links. Binding energy between any pair of 
such FPs: {U, V}, of the dimensions (m×1)and (n×1), 
correspondingly, for given [A]∈ IRm×n is been defined by a 
interval bilinear form: 

[ω]=−UT[A]V,   (1) 

where [ω]∈ IR1, [ω] = [ω−, ω+] = {ω ∈ R1 |ω− ≤ ω ≤ ω +} , 
ω− ≤ ω+. Binding energy ω ∈  R1 for ∀ A ∈ [A] is been 
defined by a bilinear form: 

ω = − UTAV,  (2) 

where A∈ Rn×m. As it is known that extreme values of the 
bilinear form (2) are determined by the so-called Singular 
Value Decomposition (SVD) of the matrix A∈ Rn×m: 

A = s1U1V1
T+ s2U2V2

T + …..+spUpVp
T,            (3) 

where si, i = 1,…, p - are singular values of the matrix 
∀ A ∈ [A], Ui, Vi, i = 1,…, p - its left and right singular 
vectors, p - rank of the matrix A. These singular values 
and vectors satisfy the following bindings: 

s1 ≥  s2≥…sp ≥ 0,  si = Ui
TAVi, Vi

TVi = 1, Ui
TUi = 1, i = 

1,…,p. 

Let [A] ∈  IR n×m. Given an interval matrix [A] ∈  IR n×m, 
we look for interval quantities [s1] ∈ IR, [U]∈  IRm, [V]∈  
IRn satisfying the following properties: 
• [s1] contains an maximal singular value of each 

matrix ∀ A ∈  [A]; 
• for each of these singular values [U]∈  IRm, [V]∈  IRn 

contain at least one corresponding left and right 
singular vectors. 

Below we will consider two approaches of computing the 
singular value of the interval matrix [A]:center approach 
and adaptive approach. 

2.2 Center Approach 
Assume, that the interval matrix [A] can be presented as 
[A] =[AC−∆, AC+∆], AC = mid ([A]), mid[aij] = aij

− 
+0.5(aij

− − aij
+) is the midpoint of [aij], AC ∈  R n×m, ∆ ≥0, 

∆.∈  R n×m. The midpoint of the interval matrices is 
defined componentwise. Computing the singular values of 
the interval matrix [A] can be done by calculating bounds 
on the eigenvalues of the symmetric interval matrix [B]= 
[A]T[A] (Deif, 1991). However, such an approach 
overestimates the true bounds. The latter are better 
obtained directly from the eigenvalue problem for 
matrices AAT, A ∈  [A] (Deif, 1991). Given a central 
matrix AC ∈  R n×m, find for interval matrix [A] ={ A: | 

A−AC| ≤ ∆A} . (Here and in sequel, the absolute value |⋅| 
and the inequality sign �≤� are understood 
componentwise). A description of the set of singular 
values 
Σ = { s1: ATAx = s1

2x, x≠ 0, A∈  [A]} . 

In (Deif, 1991) the solution set has been received in 
analytic form. Let the matrix S1

i is a diagonal matrix of 
the signs of the components of xi, while S2

i represents the 
signs of those of the matrix 2 ACxi +δAxi, where |δAxi| < 2| 
ACxi|. Then the squared singular values si

2 of AC + δA,  

∀  |δA| ≤ ∆A, range the interval 
[si

2((Ac)TAC – 2(S1
i∆ATS2

iAC)sym + S1
i∆AT∆AS1

i), si
2((Ac)TAC 

+ 2(S1
i∆ATS2

iAC)sym + S1
i∆AT∆AS1

i)], 
where Bsym denotes the symmetric part of a matrix B. 

2.3 Adaptive Approach 
Case 1. Let [A] ∈  IRn×m – interval matrix.  Then the 
singular values of [A] are eigenvalues of the next matrix 
[B]∈  IR (n+m)×(n+m), [B] = |B1, B2|, where B1, B2 – are 
colums, B1 = |0, [A]| T, B2 = |[A]T, 0|T. 

Find a description of the eigenpair set 
Σ = { (λ, x)∈  Rn+m+1| Bx = λx, x ≠ 0, B ∈  [B]} . 

Then we use the function (Mayer, 1992) 
F{ (∆X, ∆Λ)T}  = −R { ([B]−λΕ)x, Ix−1} T+{Ε−RG}{ (∆X, 

∆Λ)T} , 

where ∆X∈ IRn+m, ∆Λ∈ IR1, E, I-unit matrix and vector, G 
={ G1, G2} , G1 ={ ([B]−λΕ), IT} , G2 ={−∆X−x, 0}T. If the 
enclosure holds 

F{ (∆X, ∆Λ)T}⊆  (∆X, ∆Λ)T, (5) 

then an eigenpair [λ] , [x]  of [B] lies within 
[λ]  ∈  λ + ∆Λ, [x] ∈  x + ∆X. 

In this case we calculate floating point approximations λi, 
i = 1, …, (n+m) for the eigenvaluees of [B]∈  IR 
(n+m)×(n+m), with the shifted QR algorithm. Consequently, 
we can iterate accoding to 

( ∆X, ∆Λ) (k+1) = F(∆ X, ∆Λ (k)), k = 0,1,2,…,  

∆X (0) =x, ∆Λ =λ, 

until (5) holds. 
Case 2. [A] ∈  IRn×m – interval matrix. Find a description 
of solution set of maximal singular value, left and right 
singular vectors for an interval matrix [A]: 

Σ P ={(s1, U, V) ∈  Rm+n+1, s1∈ R1, U∈ Rm, V∈ Rn: AU 
= sV, ATV = sU, VTV= 1, UTU = 1, ∀ A∈  [A], A with 
property Ρ},   (4) 

where Ρ is some fixed property such as symmetry, skew-
symmetry, Toeplitz form, etc.. For example, let interval 
matrix [A] ∈ IRm × m with [aij] =[aji] for i,j = 1,…,m. The 
set of matrices  

{ Asym }={ A∈ Rm×m | A∈ [A], A symmetric}  



 

 

is called a symmetric interval matrix. { Asym }  ∉ IRm× m is 
not interval matrix in the usual sense. { Asym }⊆  [A] and 
{ Asym }=  [A] if and only if aij

- = aij
+ for i,j = 1,…, m, i≠j. 

The aforementioned solution set is 
Σ sym ={(s1,U, V) ∈  Rm+n+1, s1∈ R1, U∈ Rm, V∈ Rn: AU 

= sV, ATV = sU, VTV = 1, UTU= 1, A = AT ∈  [A]} .  (6) 

Singular value decomposition (SVD) of interval matrix 
includes the following procedures: 
Procedure 1. Definition of the set (4) of maximal singular 
values s1 and corresponding left and right singular vectors 
for a real (a thin) matrix ∀ A∈[ A]. 
For definition of maximal singular value s1 and the left 
and right singular vectors U and V, corresponding to the 
s1, the rather simple and reliable scheme and deflation 
method have been used (Tarakanov, 2000): 

UT
(k+1) = VT

(k)A, V(k+1) = AU(k+1)  
sk = Uk

TAVk,      |sk+1 −sk| ≤ε, (7) 
where k=0,1,2,... - is the number of iteration, ε - the given 
precision of calculation. It can be shown, that for arbitrary 
unit vectors V(0) , U(0)  iterations by scheme (7) converge 
in general case to the singular vectors U, V corresponding 
to the maximal singular value s1= VTAU. Calculate the 
interval hull for Σ P (4)  

 Σ P = {[ s1], [U1],[V1]}.   
Then using deflation method, the next matrix  

A(p) = A(p-1) – sp-1Up-1Vp-1
T   (8) 

is formed on the step p, and its maximal singular value sp 
and corresponding singular vectors Up, Vp are determined 
by the scheme (7). Calculate the interval hulles for Σ P

p 

 Σ P
p = {[ sp], [Up],[Vp]}.   

Procedure 2. Definition of the intervall hulles for the sets 
of singular values and right and left singular vectors of 
interval matrix [A]. We define the matrix B∈ Rm+n+2 for 
∀ A∈  [A] by (Alefeld, 1987): 

B = { B1, B2, B3, B4} ,  (9) 

where Bi, i = 1, 2, 3, 4 the columns of corresponding 
dimensions  

B1 = | A, -sIn, 2UT, 0|T,  B2 = |-sIm, AT, 0, 2VT|T, 

B3 = | -V, 0, 0, 0|T,   B4 = |0, -U, 0, 0|T 

and the vectors ν∈ Rm+n+2, r ∈ Rm+n+2 and f(ν)∈ Rm+n+2 by 
ν =|∆U, ∆V, ∆s, ∆s|T, r =|sV –AU, sU – ATV, 1-UTU, 

1-VTV|T, 

f(ν) =|∆s∆U, ∆s∆V,-∆UT∆U,-∆VT∆V|T,  (10) 

where A∈[ A], s, U, V –thereafter the maximal singular 
value and left and right singular vectors, the errors are 
equal ∆s = s-s’, ∆U = U – U’, ∆V = V – V’, ∆s∈  R1. 
Let ν∈ Rm+n+2, [ν]∈  IRm+n+2. As it is shown in (Alefeld, 
1987) the matrix B is nonsingular.  Assume that, L is an 
approximation to the inverse of B or the exact inverse of 
B itself.  Consider 

[F] = Lr + (E-LB)[ν]  + Lf([ν] ) (11) 

(E � unit matrix of corresponding dimention). 
If the enclosure  

[F’] ⊆  [ν ’], for [ν ’] ⊆  IRm+n+2  (12) 

holds, then ([s],[U],[V]) of [A] lies within  
[s] ∈  s + ∆s’, [U] ∈  U + ∆U’, [V] ∈  V + ∆V’. (13) 

Consequently, we can iterate accoding to 
(∆ν(k+1)) = F(∆ν(k)), k = 0,1,2,…, ∆ν(0) = ν, (14) 

until (12) holds.  
Now the following algorithm computes interval singular 
value [s], left and right singular vectors [U], [V]: 

• compute with iterations by scheme (7) maximal 
singular value s1 and the corresponding left and 
right singular vectors U1, V1 for any A∈[ A]; 

• compute the interval hulle for Σ P (4); 

• calculate matrices B, L; 

• iterate accoding to (14); 

• calculate (13). 

Obtained results of SVD of interval matrices were used 
for development of Pattern Recognition procedures 
(Tarakanov, 2000) for Interval Aftificial Immune Systems 
for Surveillance the Plague and Security Systems. 

3 Interval AIS for Surveillance the Plague 
Natural plague foci in the former soviet state Kazakhstan 
cover an area of 130 million hectares and over the past 50 
years they have been considered the most active plague 
foci in the world.  Recently, local and foreign workers 
have increased the level of human activity in the natural 
foci regions, often in connection with an intensive 
exploitation of natural resources (e.g. gas and oil).  These 
activities are often organized by multinational companies, 
which increase the probability of plague cases being 
exported abroad. 
Plague foci in Kazakhstan covering vast territories are 
characterized by different regulation mechanisms at the 
population species and community (biocenotic) levels. 
The plague epizootic process is a complex 
multicomponent dynamic system.  The behavior of 
particular subsystems of the plague epizootic triad (agent-
host-vector), the entire epizootic process in foci taking 
into consideration the complicated interrelations of the 
above subsystems have been investigated by 
microbiologists, biologists, epidemiologists, etc (Ageyev, 
1975, Aikimbayev, 1994, Aubakirov, 1990,�) and 
consequently, considerable experimental material has 
been accumulated  on population, organism and cellular 
levels.  
For the first time, mathematical models have now been 
obtained (Marshall, et al., 2001) which show the 
dynamics of interactive stray-host relationship on 



 

 

population level in the plague triad.  This solved the 
problem of structure and parametric identification in a 
group of non-linear stochastic differential equations 
taking into account the delay and influence of external 
factors as an additive disturbance with defined statistical 
characteristics.  The results of simulation modelling were 
obtained and the results of digital experiments were 
compared with real data.  
A new qualitative approach to the solution of the task of 
prediction of epizootic processes in natural plague foci 
was suggested (Tarakanov, Sokolova et al., 2000), using 
the mathematical basis of AIS for its solution.  As was 
mentioned above, it was based on singular value 
decomposition (SVD) in combination with the deflation 
method, the binding energy between a pair of formal 
peptides.  The characteristics of SVD are its quick 
convergence and robustness, which allows a considerable 
quantity of spatially-temporal series (45 temporal series) 
characterizing the condition of triad on the different levels 
for the solving of the prediction task.  Using procedures 
for supervised learning, unsupervised learning, 
classification and presentation of the results of research in 
IC shape space.  The comparative analysis of this 
approach compared with traditional approaches has 
demonstrated its considerable advantages.  The results 
from the creation of an Interval Artificial Immune System 
for the surveillance of plague are shown below. 

3.1 Significant Factors and the Characteristics 
of Plague Processes 

The plague epizootic process is a complex 
multicomponent dynamic system which is characterized 
by the interaction of particular subsystems of the plague 
epizootic triad: agent-host-vector (Aikimbayev et al., 
1994, Aubakirov et al., 1990, Ageyev, 1975, Marshall et 
al., 2001).  
The state of the agent is characterized by the following 
differential and diagnostic properties (Aikimbayev et al., 
1994).  The Qualitative Properties: the morphology of 
colonies the susceptibility to bacteriaphage 
(Pokrovskaya�s homologous, heterologous 
pseudotuberculous), glycerin, fermentation, rhamnose 
fermentation, denitrification/nitrification, 
pesticinogenecity, the susceptibility to pesticine, the 
presence of VW-antigens, the need of growth factors. The 
Quantitative Properties: the dependence on calcium at 
370C, the presence of antigen of Fraction 1 in the reaction 
of passive hemagglutination and immunoglobulin plague 
erytrocytic diagnosticum, growth on the medium with 
hemin, the integral property - virulence in white mice and 
guinea-pigs (LD-50, DCL, according to Kerber�s 
calculation).  Most frequently, the state of the agent can 
be characterized only by its numbers expressed through 
indirect indices: the infestation of rodents, fleas or 
samples (points) obtained not only from the given area 
but also from the adjacent ones.  
The state of fleas - vectors of a plague microbe - is 
expressed (Ageyev, 1975) through their numbers, the 

seasonal activity in attacking animals, through the sex and 
age composition of the imaginal phase; as well as with the 
help of mass emergence of imago on animals and in 
openings of rodent burrows after hibernation, the 
ovipositor (its beginning, peak and termination), the 
larvae hatch (its beginning, mass numbers and 
termination) and other indices.  Other relative indices of 
numerocity include the Index of abundance, the Index of 
dominance, and the Index of fidelity, the total numbers of 
fleas per hectare. 
The state of hosts is characterized by the aggregate of 
factors of influence, the set of characteristics at the 
biocenotic, population and organism levels.  This set is 
included the following main factors: density of family 
burrows, numbers of the hosts in different seasons, age 
and sex structure of host population; reproduction, 
mortality rate, dynamics of the level of infection 
susceptibility, determination of age, sex and generative 
state of hosts, etc. 
The data characterizing the state of the members of the 
epizootic triad are classified according to the season 
(spring, summer, autumn), and sometimes (for example, 
in case of reproductive indices) according to months and 
even decades. 
Weather, geographical and space characteristics constitute 
the indices of external factors.  The weather 
characteristics are: the temperature of the air, soil and 
precipitation, various hydrothermal coefficients, the 
recurrence and the wind velocity according to compass 
points, the recurrence of the types of atmospheric 
circulation, the value of flood, etc.  

3.2 The tasks of Pattern Recognition 
The Development of AIS is important to recognise future 
patterns of plague epizooyic process (Tarakanov, 
Sokolova et al., 2000).  AIS is intended to improve risk 
analysis and underlying understanding of the space-time 
dynamics of the plague in the Republic of Kazakhstan.  
Moreover, AIS could be considered as a part of the 
surveillance systems of re-emerging infectious diseases of 
direct importance to the world community both through 
tourism and other international activities.  AIS could be 
considered as a model system for processing surveillance 
data of other dangerous infections in all parts of the 
world. 
Input data for the AIS are generated by the two main 
blocks: 

1) Base of surveillance data on the plague on 
Akdala plain, including computerizing the  
existing historic data, which is currently only 
available on handwritten paper; 

2) A set of mathematical models (stochastic, 
interval and discrete) of the space-time dynamics 
of the plague. 

Based on the input data the main functions of the AIS 
consist in evaluating a current danger of the plague 



 

 

infection, as well as predicting a risk of infection in the 
future. To perform such functions the core of the AIS 
represents a pattern recognition block. Namely software 
of this block emulate our IC approach to pattern 
recognition. 

3.2.1 Supervised Learning 

To identify the state of the epizootic process we use the 
input data to represent the state of host and vector, the 
indices of external factors andthe space-time dynamics of 
the plague. 
Figure 1 and Table1 give input data for this task. Figure 1 
shows numbers of infected sectors (vertical axe) over the 
several years (horizontal axe) for the Akdala plain. Each 
sector represents a square of 10×10 km. If the plague's 
host (rodent), which has been caught in the sector, 
contains a plague microbe, then the entire sector 
considered as infected. 
 

 
 

Figure 1: Space-time dynamics of the plague on the 
Akdala plain 

 
It worth to denote, that the number of infected sectors, 
obtained by such a method, represents nowadays the most 
appropriate indicator of epizootic process (Aikimbayev et 
al., 1994). 
A fragment of the surveillance data of the Akdala plague 
focus during 11 years is represented in Table 1. 

 
 
 
 
 
 
 
 
 
 
 

Table 1: A fragment of the database of surveillance the 
plague 

 

YEAR 
 

1 
9 
7 
6 

1 
9 
7 
7 

1 
9 
7 
8 

. 

. 

. 

. 

1 
9 
8 
7 

1 
9 
8 
8 

p1 [2.5, 
3.3]  

[1.3,
1.8]  

[5.2,
6.1]  

 [4.0,
5.3]  

[13.5, 
15.8]  

p2 [0.3,  
0.7]  

[4.1,
5.4]  

[29,
-32]  

 [4.4,
4.9]  

[16.1, 
18.6]  

p3 [1.9, 
2.3]  

[1.1,
1.4]  

[3.4,
3.9]  

 [1.7,
1.8] 

[4.8, 
5.0] 

: : : : : : : 
p40 33.9  12.0  34.2   36.2  15.3  
p41 1.3  10.0  11.7   0.7  7.7  
p42 5.0  6.0  8.7   1.0  25.7  
p43 0.3  0.0  0.0   1.3  12.0  
p44 0.0  0.0  0.7   1.0  1.0  
p45 5.0  4.0  2.7   2.3  1.0  

 
The fragment includes 45 parameters p1-p45 such as: 
number of rodents per square p1 (in autumn), p2 (in 
spring), number of infected rodents per square p3 (in 
autumn), p4 (in spring),�, total atmospheric precipitates� 
p40(September), average height of the snow blanket - p41 
(January) � 43(Mach), p44 (November) � p45(December). 
As is shown in Table 1 such parameters as the number of 
rodents and fleas per square, number of infected rodents 
and fleas per square are interval. For example, the number 
of rodent per square in autumn � p1 equal [2.5, 3.3] in 
1996, [13.5, 15.8] in 1998 and so on, (Tarakanov, 
Sokolova et al., 2000) are necessary for Pattern 
Recognition for interval systems. 
For decision the task of the identification of epizootic 
process state we use four classes (Figure 1). Class 1 - 
from 1975 to 1978 � the period of depression prior to the 
epizootic process; Class 2 � from 1978 to 1979 �the 
ascending branch of the epizootic process; Class 3 from 
1979 to 1981 � the descending branch of the epizootic 
process; Class 4 � from 1981 to 1985 the depression after 
the epizootic process. The states of the epizootic triad on 
the ascending branch and the descending branch of the 
epizootic processes are different. Thus, learning patterns 
are given by the years 1976-1981 and the task is to assign 
the corresponding classes to the years 1984-1998. Classes 
that have been assigned by the AIS to the years 1976-
1981 are considered as a test of the process. 
When the beginning of epizootic process has been 
predicted, the identification of the �power� epizootic 
process has been accomplished. We use Figure 1 and 
three classes: Class 1 � 1979, Class 2 � 1990, Class 3 � 
1993. Thus, learning patterns are given by the years 1979, 
1990, 1993 and the task is to assign the corresponding 
classes to years 1994 �1998. In this case 19 space-time 



 

 

rows characterized the state of agent are added in Table 
1(p 46 � p 64). 
Using Immunocomputing allowed us to solve the tasks of 
host (large gerbil) and vector (fleas) number prognostics. 
For this purpose we use the annual (spring, autumn) 
space-time dynamics of the plague numbers 
representatives on Figure 2. 
 

 
 

Figure 2: Annual space-time dynamics of the plague 
numbers 

 
According to the immunocomputing approach the 
aforementioned tasks are solved as follows. 

Foldering vectors to matrices 

Fold every column Ryear of Table 1 (vector of the 
dimension 45×1) to a matrix Ayear of the dimension 9×5. 
As is obvious from Table 1 any elements Ryear are interval 
elements so the matrix Ayear  also is interval. 

Learning 

Form matrices [A1], [A2], [A3],, [A4] for the classes 1,2,3,4 
correspondingly: 
[A1] = {[ A1975], [A1976], [A1977], [A1978]} ; 

[A2] = {[ A1978], [A1979]} ; 

[A3] = {[ A1979], [A1980], [A1980], [A1981]} ; 

[A4] = {[ A1981], [A1982], [A1983], [A1984], [A1985]} , 

where {[ S]}  = { infS, sup S}  

and midpoint mid[Ai] of interval matrices [Ai], i = 1,2,3,4. 

Using the computing prosedures of Part 2 we compute 
their interval singular vectors: 

{U1,V1} – for [A1], {U2,V2} – for [A2] 
{U3,V3} – for [A3], {U4,V4} - for [A4]. 

Recognition
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Compute four values of the binding energy for every 
input pattern [Ayear] (upper case T designates a symbol of 
the transposing): 

[ω1]= UT
1[Ayear]V1,  [ω2]= UT

2[Ayear]V2, 

[ω3]= UT
3[Ayear]V3,  [ω4]= UT

4[Ayear]V4. 

Determine the means of the minimum binding energy for 
every class: 

ω = minω∈[ω]  max ωA∈[ A] 

Determine the class to be found by the minimal value of 
the binding energy:  

k:ωk = min {ω1,ω2,ω3,ω}. 
The results of the recognition are showed in Table 2, 
where the minimal values of the energy are underlined. 
According to Figure 2, the classes that have been 
recognized could be treated also in the last column of 
Table 2 as a risk level of the plague infection. 

 
Table 2: Results of the recognition 

 

YEA
R 

CLA
SS 
by 

EXP-
ERT

S 
 

- ωωωω1 - ωωωω2 - ωωωω3 CLA-
SS 

by 
IAIS 

RISK 
of 

INFEC-
TION 

1976 1 138 13 126 1 mid 
1977 1 133- 18 113 1 mid 

: : : : : : : 
1985  141 10 148 3 low 
1986  152- 66- 150- 1 mid 
1987  174- 182 171 2 high 
1988  197- 493- 183 2 high 
 

3.2.2 Unsupervised Learning 

Consider the interval matrix [A]= { [X1],... ,[Xm]} T of 
dimension m× n formed by m interval vectors [X1], ...,  
[Xm]. Using the results of Part 2 calculate the SVD of this 
interval matrix: 

[A] ⊆  [s1][U1][V1]T + [s2][U2][V2]T + …., (15) 
where [s1], [s2] are the first two interval singular values, 
and [V1], [V2] are the interval right singular vectors. 
According to (Tarakanov, 1999) there can be established 
a rigorous correspondence between vector and Formal 
Peptide (FP). So, consider two FPs as antibodies: {FP-1, 
FP-2}, which are corresponded to vectors [V1], [V2]. 
Consider also eleven FPs: {FP1 , ... , FP11}, which are 
corresponded to the strings of the matrix A (columns of 
Table1). Then every string Ai, which represents the 
number of year i =1,...,11, can be mapped to the 2 values 
{x1i , x2i} of the binding energy between FPi and two 
antibodies : 
[x1i] = [ω(FP-1, FPi)],   x1i = min{ x1i,: Ai ∈[ Ai]}  
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[x2i] = [ω(FP-2, FPi),.   x2i = min{ x2i,: Ai ∈[ Ai]}  
The obtained results are given in Table 3.  
 

Table 3: Classification of the years by a shape space of 
the IAIS 

 

YEAR x1 x2 CLAS
S 

RISK of 
INFECTI

ON 
1976 0.126 0.359 C2  
1977 0.113 0.337 C3  
1978 0.194 0.313 C1  
1979 0.5820 -0.261 A High 

: : : : : 
1986 0.197 0.292 C1  
1987 0.348 0.188 B Mid 
1988 0.699 -0.366 A High 

 
The results presented in this Section show, that 
Immunocomputing is rather powerful, robust and flexible 
approach to complex biological systems with interval data 
such as Natural Plague foci. 

4 Interval AIS for Security System 
The protection of the person and protection of property is 
always one of the main problems facing a society during 
its historical development as these questions are most 
closely connected to one of the basic instincts of the 
person - an instinct of self-preservation. 
Responsibility for the protection and also for the 
prevention of criminal activity is the responsibility of the 
state through law enforcement bodies and the justice 
system. 
The protection of official buildings, industrial enterprises, 
banks, places of retail trade, homes etc. often utilizes 
security systems.  These systems have the all-
characteristic indications of complex systems: 

- large number of the interconnected elements,  
- basic indeterminacy from of indefinity of the 

information about a potential criminal and his 
operations; 

- �human factor� connected with the necessity of 
acceptance by the man of operating solutions; 

- natural factors consisting in wide variety of 
climatic conditions, 

- natural and industrial parasites. 
The analysis of domestic experience and foreign radiants 
(C and K Systems, 1997, etc.) has shown, that 
approximately 95 % of alarms are false. Many 
malfunctions are caused by a device reacting to various 
false indicators, which should be referred to as parasites. 
The analysis of complex security systems has shown what 

it is often impossible to determine the reasons for a 
malfunctioning of the signal system. 
The use of the IC approach for an intelligent technique of 
analysis of non-standard alarm information has been 
developed and an Interval AIS for Security System (ISS) 
for the complex objects has been constructed (Sokolova et 
al., 2000). It has considerably lowered the number of 
malfunctions of signal security systems.  
ISS requires the realization of the following functions: 

- state estimation of the complex objects and 
analysis of the non-standard alarm information 
on the basis of the mechanism of information 
processing; 

- implementation of procedures of supervised and 
unsupervised learning; 

- implementation of pattern recognition 
procedures of the non-standard alarm 
information in the shape space of IC. 

Passive infra-red gauges (PIR-detectors) have received a 
wide circulation and are one of the basic means of the 
signal system for protection of premises, areas, passes, 
corridors etc. A passive principle of action, i.e. the 
absence of any radiation, makes this method absolutely 
harmless to the person who is in the zone of its action. It 
is also used for the protection of  exhibits, for example, in 
a museum exhibition of ancient manuscripts, fabrics and 
other fragile and easily destroyed objects. The principle of 
action of a PIR-detector is based on measurement of the 
difference in temperatures of the person and the 
surrounding environmental surface (walls, a floor and 
furniture) premises witrhin the visibility range of the 
optics of the device. 
The main failing of PIR-detectors is the difficulty of  
identifying the point of penetration, and the size of an 
intruder. Identifying the point of penetration is necessary 
for an effective reaction by security staff. The correct 
estimation of the size of the intruder can sharply reduce 
the number of false alarms.  The cause of an alarm can be 
various animal (cat and dog), left by the owners in a 
location.  The mode of creation of the open information 
channel for each feeler of the PIR-detector with matrices 
of sensitive elements 4×4, 8×8, 16×16 is applied for 
elimination of this shortfall ininformation. Such devices 
permit identification of the point of penetration of the 
intruder and sharply reduce the number of false alarms 
from the signal system. Depending on the means used for 
detecting intrusions, the corresponding factors may accept 
the values appropriate logic 0 or 1 (threshold algorithms) 
or to change in any fixed interval (for example, in a range 
from 0 up to 255 at application of 8-bit analog-digital 
converters). 
Using PIR-detectors with a through information channel it 
it is possible to estimate the route an intruder is taking 
into a protected zone.  Accordingly, having such 
information, will enable security staff to define tactics to 



 

 

identify his objective and prevent the escape of the 
intruder. 
Let's consider that identification of the point of  
penetration in a guarded zone and the possible route to of 
an intruder to his objective are carried out with the help of 
PIR-detector with a matrix 4×4 and a through 
information channel. Let's assume, that in the fixed 
instants with application space mechanical, or optical 
scanning the alarming information from the PIR-detector 
with a matrix 4×4 is obtained, i.e. the vectors of values of 
indications of dimension 16×1 are obtained thereafter in 
times t1, t2, t3:  

X1 = [1,0.1,0.4,1,1,1,0.2,1,0.1,1,1,0.7,0.3,0.8,1,0.2]T, 

X2 = [0.1,0.6,0.2,1,1,1,0.4,1,0.1,1,1,0.7,1,0.8,1,1]T, 

X3= [1,0.1,0.8,1,1,0.5,1,1,0.1,1,1,0.4,0.2,0.4,1,0.5]T. 

On the basis of the obtained information and in view 
of judgement of the expert the learning sampling of 
alarming situations as the Table 4 is formed. 

 
Table 4: Learning sampling by results of the non-standard 

alarming situations analysis. 
 

NUMBER  VALUES OF 
INDICATIONS 

CLASS 

 x1 X2 x3 K
 

x16  

1 1 0,3 1  1 1 

2 0,1 0,6 1  1 2 

3 0,2 0,8 0,9  0,7 3 

4 0,5 1 0,7  0,1 4 

N 1 1 0,5  0,1 1 

 
From these received vectors we form the interval vector 
[X]  as  

[X] = { X1, X2, X3} . 

Then we use all steps of Supervised Learning, 
Unsupervised Learning. 
Applying interval AIS to Security Systems has allowed 
the use of dynamic information about non-standard alarm 
situations and considerably reduced the quantity of false 
signals (Sokolova, ed. A.O. Tarakanov, 2000). 
 

5 Conclusions 
The results presented in this paper show, that 
Immunocomputing is a powerful, robust and flexible 
approach to complex systems with interval uncertainty.  
Further development of the Immunocomputing approach 
on class of interval objects requires the development of 

additional simplified computer procedures of singular 
decomposition of interval matrices, production of inner 
and outer estimation of a set of solutions and the values of 
interval bilinear forms that determine the binding energy 
between formal proteins. 
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Abstract 
 
aiNet is an artificial immune network model 
originally developed to perform automatic data 
compression. Combined with graph theoretical 
and statistical clustering techniques, aiNet is a 
powerful data clustering and classification tool. 
However, the original aiNet model suffers from 
the lack of a well-defined stopping criterion and 
an ad hoc approach to parameter initialization, 
prior to the training process. This paper has two 
main goals. First, by assessing convergence cri-
teria employed in a class of artificial neural net-
works, a suitable stopping criterion can be cre-
ated for aiNet. Secondly, the paper demonstrates 
that through the use of a cooling schedule for 
some of these user-defined parameters, it is not 
only possible to reduce the importance of their 
initial values, but also this leads to possible deri-
vation of a hierarchical tree of immune networks. 
Due to the very limited space available, only the 
basic ideas of a novel convergence criterion, and 
an approach to develop a tree of aiNets will be 
presented, together with an illustrative example.  

1 INTRODUCTION 
The emerging field of artificial immune systems (AIS) 
has grown very rapidly in the last few years. The applica-
tions of AIS can be considered as very diverse, ranging 
from autonomous navigation to data analysis (Dasgupta, 
1999; de Castro & Timmis, 2002). Two immune network 
models developed quite independently by Timmis (2000) 
and de Castro & Von Zuben (2000) have been used as 
alternative biologically motivated approaches with which  
to perform data clustering. 
Other, more well established biologically motivated para-
digms, widely used to perform data clustering are the self-
organizing neural networks, in particular the self-
organizing feature maps (SOFM) introduced by Kohonen 
(1982). The SOFM, as originally proposed, is capable of 
performing a dimensionality reduction of a set of input 
data into a (usually) regular grid of output units. During 
the SOFM learning process, ‘similar’ input data are 

mapped into neighboring units in the output grid of the 
network. By adopting a given metric to evaluate the simi-
larity among the input data, combined with the network 
weight vectors (usually the Euclidean distance), at the end 
of the learning process the output grid of the SOFM is 
capable of preserving topological and metric relationships 
contained within the input data set. Despite great poten-
tial, the original SOFM suffers from some limitations. 
First, although the SOFM is capable of mapping similar 
data items into neighboring units in the output grid, the 
automatic inference of the number of clusters contained in 
the data set is not a straightforward process. Second, the 
determination of a suitable dimension for the output grid 
is also not automatic. Finally, the mapping performed by 
the SOFM does not account for any hierarchical structure 
within the data set.  
In order to alleviate some of these limitations of the origi-
nal SOFM, several variations have been proposed and 
introduced in the standard algorithm. Among these are 
methods for the automatic segmentation of clusters within 
a trained SOFM via, for example, the U-matrix (Ultsch, 
1995); algorithms to dynamically generate the network 
architecture according to the input data set (Fritzke, 1994; 
Cho, 1997; de Castro & Von Zuben, 1999); and the pro-
posal of hierarchical methods for growing neural network 
trees (Adams et al., 1999; Costa & Netto, 1999). 
The immune network model discussed in this paper was 
introduced by de Castro and Von Zuben (2000), and 
named aiNet (Artificial Immune NETwork). The main 
role of the standard adaptive algorithm proposed for the 
aiNet was to reduce data redundancy, whilst at the same 
time extracting relevant information from the data set, 
such as the spatial distribution of the inherent data clus-
ters. The network cells within aiNet are represented in a 
space of same dimension as the input data, i.e. no dimen-
sionality reduction is performed, but the network size is 
controlled based upon the immune network dynamic and 
metadynamic processes (Varela et al., 1988). The network 
cells represent an “internal image” of the input data set, 
and therefore it became necessary to use additional tools 
in order to automatically identify and separate clusters in 
this network of cells. The authors employed the use of the 
minimal spanning tree (MST), borrowed from graph the-
ory, as a useful mechanism with which to automatically 
detect and separate the network clusters (de Castro & Von 
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Zuben, 2001). In order to assess the performance of aiNet, 
the authors applied the aiNet model to the well-known 
two spirals problem (Fahlman & Lebiere, 1990) and also 
to the chain link problem (Ultsch, 1995). Although these 
datasets are composed of non-linearly separable clusters 
of data (which cannot be automatically detected with the 
standard SOFM), the inner-subset distance of a data point 
is of orders of magnitude smaller than the inter-subset 
distance. This makes the MST application very effective 
at processing networks produced from aiNet, as aiNet 
positions network cells in appropriate locations within the 
space. Additionally, the number of clusters was low (only 
two, in both cases) and their shapes very similar. In cases 
where the number of clusters is high and their shapes are 
non-uniform, the proposed MST approach for the aiNet 
model still presents good results, but may not be capable 
of solving the whole problem in a single run for a given 
set of user-defined adaptive parameters.  
This paper proposes two new theoretical results for the 
aiNet algorithm. First, it proposes a convergence criterion 
for the network iterative process that seeks to interrupt 
learning when the capability of the network to represent 
the input data degrades for a given network dimension.  
Secondly, the paper introduces an automatic hierarchical 
method to generate a tree of aiNets capable of detecting 
clusters with less-uniform characteristics, alleviating the 
problem of choosing initial values for some user-defined 
parameters. This model was largely inspired by the hier-
archical variations proposed for the SOFM and referenced 
above, in particular those by Adams et al. (1999) and by 
Costa and Netto (1999). 
This paper is organized as follows. Section 2 briefly dis-
cusses the problem of cluster analysis and competitive 
learning. This is important to allow for a characterization 
of aiNet and to provide a background for the (conver-
gence and hierarchical) methods to be proposed. Section 3 
briefly reviews the aiNet learning algorithm. Section 4 
proposes a convergence criterion for aiNet and Section 5 
proposes the hierarchical approach for the generation of a 
tree of aiNets. Section 6 illustrates the performance of the 
methods proposed when applied to a simple benchmark 
problem. The work is concluded in Section 7 with a dis-
cussion of the methods proposed and possible extensions 
of this work and future trends for the aiNet algorithm.  

2 CLUSTER ANALYSIS AND COM-
PETITIVE LEARNING 

This work addresses the problem of detecting inherent 
separations among subsets (clusters) of a given data set, 
named generically Ag, in a shape-space governed by an  
Euclidean distance. Note that inherent separation is used 
here to emphasize that any separation detected by the 
aiNet minimal spanning tree (Section 3.1) is going to 
depend solely on interpoint distances within the resultant 
network cells.  
The partition of data into subsets, which are less hetero-
geneous than the primary set, has applications in several 

domains, where the main goal is to get some insight of the 
underlying structure of the data. Although several differ-
ent algorithms have already been proposed in the litera-
ture, no general framework has yet been presented. For 
good surveys the interested reader might refer to Everitt 
(1993) and Jain et al. (1999).  
Clustering methods range from largely heuristic ap-
proaches to more formal procedures, and are commonly 
divided into hierarchical and partitioning methods. The 
discussion to be presented here focuses on the hierarchical 
methods, whose limitations were sources of inspiration 
for the improvements proposed in this paper. Traditional 
optimization clustering techniques, such as k-means clus-
tering, discover the clusters in the data by optimizing the 
initial cluster prototypes to reduce a cost function. The 
most commonly used cost function is the mean squared 
error (MSE), which is given by 
MSE = ΣAg ||Ag – Abi*||2,      (1) 
where Ag is an input vector, and Abi* is the classifying 
prototype such that  
||Ag – Abi*|| ≤ ||Ag – Abi||   ∀i,      (2) 
where Abi are the prototypes, which in this case corre-
spond to the aiNet cells. 
A major drawback of these clustering techniques is that 
they require the pre-definition of the number of clusters to 
be used, and are also sensitive to the initialization of the 
prototypes. 
Hierarchical clustering techniques provide a complete, 
structured grouping of the input data set, going from all 
objects being members of the same cluster, to several 
clusters each containing a single datum object. The hier-
archical methods can be further subdivided into agglom-
erative and divisive strategies. Agglomerative methods 
start with all objects having their own cluster and com-
bine clusters until a single cluster exists. In contrast, divi-
sive methods begin with all objects being members of the 
same cluster and divide the clusters until every cluster has 
just one object. The main problems with the hierarchical 
methods are (1) undesired merging of objects cannot be 
corrected at later stages; (2) memory usage required is 
usually proportional to the square of the number of clus-
ters in the initial partition; and (3) the results may be hard 
to interpret, particularly the case for large data sets. 
Finally, in aiNet the input data are assumed unlabeled, 
thus resulting in a type of competitive learning algorithm. 
With competitive learning, clustering of the input data is 
performed such that the MSE given by Eq. (1) is itera-
tively reduced. For each input datum (Ag), a winning unit 
(the closest to the input, given a certain distance measure) 
is found (Abi), and is moved towards the input vector 
using the following updating rule: 
Abi = Abi + γ(Ag – Abi),      (3) 
where γ is a learning rate. 



3 aiNet DESCRIPTION  
One of the most striking characteristics of the immune 
system is its capability to recognize and eliminate harmful 
invading micro-organisms (e.g., viruses, bacteria, and 
parasites) or malfunctioning self cells (e.g., tumor and 
cancer cells). Clonal selection and expansion is the most 
accepted theory used to explain how the immune system 
copes with these invading micro-organisms, broadly 
named antigens. In brief, the clonal selection and expan-
sion theory states that when antigens invade an organism, 
a subset of the immune cells capable of recognizing these 
antigens proliferate and differentiate into active or mem-
ory cells (Burnet, 1959). The active cells have the primary 
role of combating the invasion, while the memory cells 
have long life spans. An interesting phenomenon that 
occurs during the cellular proliferation is a mutational 
event with high rates. This mutation process, together 
with a strong selective force, ensures that the set of mem-
ory cells has improved capabilities of recognizing the 
antigens. As the total number of immune cells contained 
in an organism is limited and the number of possible in-
vaders is almost limitless, the immune system has to be 
capable of generating enough cellular diversity. In addi-
tion, it has to be capable of extracting some general in-
formation (common patterns) contained in these invading 
antigens so as to promote more effective responses in 
cases of future expositions. This information extraction 
process is a consequence of the mutation, selection and 
maintenance of memory cells. 
In contrast to clonal selection, the immune network theory 
is often explored to describe how some components of the 
immune system (cells and molecules) interact with one 
another even in the absence of external stimuli. The im-
mune network hypothesizes that the immune system pre-
sents an intrinsic eigen-behavior. This suggests that self-
recognizing processes can ‘suppress’ the network dynam-
ics (activity), while the recognition of foreign micro-
organisms leads to cell proliferation and network activa-
tion (Jerne, 1974). 
These two immune theories are the basis for the artificial 
immune network (aiNet) model proposed by de Castro & 
Von Zuben (2000, 2001). In aiNet, the recognition of an 
input pattern (antigen) results in cell proliferation, muta-
tion and selection as suggested by the clonal selection 
theory. The recognition of components of the network 
itself results in the network suppression; a process simu-
lated by the elimination of all but one of the self-
recognizing cells. By following these two immune princi-
ples, the aiNet is capable of extracting relevant features 
contained in a set of input data at the same time it elimi-
nates data redundancy. 
Using a functional and high-level description, the aiNet 
learning algorithm can be presented as follows. For a 
detailed algorithm, the interested reader is invited to refer 
to de Castro & Von Zuben (2001): 
1. Initialization: create an initial random population of 

network antibodies; 

2. Antigenic presentation: for each antigenic pattern, do: 
2.1 Clonal selection and expansion: for each net-

work element, determine its affinity with the an-
tigen presented. Select a number of high affinity 
elements and reproduce (clone) them proportion-
ally to their affinity;  

2.2 Affinity maturation: mutate each clone inversely 
proportional to affinity. Re-select a number of 
highest affinity clones and place them into a clo-
nal memory set;  

2.3 Clonal interactions: determine the network inter-
actions (affinity) among all the elements of the 
clonal memory set; 

2.4 Clonal suppression: eliminate those memory 
clones whose affinity is less than a pre-specified 
threshold; 

2.5 Metadynamics: eliminate all memory clones 
whose affinity with the antigen is less than a pre-
defined threshold; 

2.6 Network construction: incorporate the remaining 
clones of the clonal memory with all network an-
tibodies, resulting in a matrix M of memory an-
tibodies; 

3. Network interactions: determine the distance between 
each pair of network antibodies and store these data in 
a matrix D; 

4. Network suppression: eliminate all network antibodies 
whose affinity is less than a pre-specified threshold; 

5. Diversity: introduce a number of randomly generated 
cells into the network 

Cycle: repeat Steps 2 to 5 until a pre-specified number of 
iterations is performed. 

3.1 EXTRACTING THE CLUSTERS 
The aiNet learning algorithm described above was de-
signed to generate a reduced set of cells (according to the 
suppression threshold – σs) representative of the spatial 
distribution of the input data. After defining the set M of 
cells’ coordinates, along with their corresponding distance 
matrix D, it is necessary to interpret the resultant network 
given by the 2-tuple 〈M, D〉. This includes the determina-
tion of the number of clusters contained in the resultant 
network (indirectly in the data set) and the selection of 
which network cells compose each of these detected clus-
ters.  
The authors employed the minimal spanning tree (MST) 
method as proposed by Zahn (1971) to detect clusters in a 
trained aiNet. Basically, this method traces the MST 
among the resultant cells in the network and searches for 
inconsistent edges in the MST. In this case, inconsistency 
refers to the ratio r, named inconsistency ratio, between 
the length of a given edge and a number of neighbor 
edges on both sides of the selected edge. The method 
suggests that an edge that is much larger than the average 
of nearby edges gives an indication of the existence of 
more than one cluster in the data. 



4 CONVERGENCE PROPERTIES 
Motivated by the desire to introduce more rigorous stop-
ping criteria for immune networks, it was necessary to 
study the convergence properties of aiNet. It was first 
necessary to characterize which type of adaptation it per-
forms, and also to study techniques from cross-validation 
theory, which is sometimes employed in supervised learn-
ing for neural networks. 
As previously discussed , the aiNet learning algorithm has 
two distinct, but interrelated, processing stages. In the 
first stage, aiNet behaves in a clonal selection fashion, 
and in the second stage, in a network-based form. The 
clonal selection part follows the clonal selection algo-
rithm, named CLONALG, proposed by de Castro and 
Von Zuben (2002). This algorithm can be considered as 
an evolutionary-like algorithm as it is a population-based 
search technique, where the individuals of the population 
reproduce, their offspring suffer genetic variation and are 
then subjected to selection. An interesting aspect of this 
algorithm is that mutation is a guided process, aiming at 
increasing the capability of recognition of the network 
cells, in relation to the input data (antigens). The guided 
mutation strategy follows the same competitive rule as 
given by Eq. (3), and is found in self-organizing neural 
networks, like the SOFM. The main difference with aiNet 
is that the learning rate has a distinct value for each cell in 
the network, and this rate is proportional to the distance 
among the selected aiNet cells (and their respective 
clones) and the current input datum (antigen). Thus, the 
aiNet learning algorithm can be characterized as an evolu-
tionary algorithm with self-organizing learning.  
This type of dynamics within the network, makes it very 
difficult to formally prove the convergence properties of 
aiNet. In the case of the SOFM, there are several works in 
the literature regarding its equilibrium states and conver-
gence properties (Kohonen, 1982; Ritter & Schulten, 
1988; Erwin et al., 1992). Although both networks, the 
SOFM and aiNet, are self-organizing, several differences 
between them can be highlighted. The SOFM assumes a 
pre-defined neighborhood function among neurons, it 
performs a dimensionality reduction of the input data and 
it employs a cooling schedule for some parameters, such 
as the learning rate and neighborhood radius. The use of 
these cooling schedules for the learning rate and neigh-
borhood radius are fundamental for guaranteeing that the 
SOFM will achieve a stationary convergent state. The 
aiNet in contrast, performs a sort of greedy search for an 
‘optimal learning rate’ for each selected network cell and 
its clones, rather than iteratively cooling the learning rate. 
Additionally, instead of an explicit neighborhood 
function, the aiNet selects a set of k-nearest neighbors 
(KNN) to a given input datum; these KNN are taken from 
the first to the last iteration of the algorithm and is under-
taken in the affinity maturation stage of the algorithm. 
Additionally, there is no cooling schedule applied to this 
number of nearest neighbors. 
From the viewpoint of an evolutionary-like behavior for 
aiNet, convergence proof becomes an even more difficult 

task. Evolutionary algorithms incorporate complex non-
linear stochastic processes, such that the theoretical con-
vergence analysis can only be performed using methods 
like Markov chains, which introduce numerous assump-
tions in order to make the problem computationally trac-
table. The result is that the analysis of the modified algo-
rithm might not always correspond to its real behavior 
(Buczak et al., 2001). 
As the aiNet is both evolutionary and self-organizing, the 
derivation of formal convergence and proof of stability 
becomes very difficult. It was therefore decided to inves-
tigate convergence empirically, so as to derive a reason-
able convergence criterion for the network learning proc-
ess.  

4.1 THE MSE AND NETWORK SIZE 
Consider the simple problem of defining an aiNet to rep-
resent a Gaussian distribution composed of 100 data 
points in ℜ 2. Assume a suppression threshold σs = 0.018, 
which is not directly relevant to this analysis. Fig. 1 illus-
trates the relationship between the MSE, given by Eq. (1) 
of the aiNet cells in relation to the input data (antigens) 
and the number of cells in the network with respect to the 
iterations. Although these curves cannot be said to typi-
cally represent the network pattern of behavior (there are 
stochastic processes within the learning algorithm), they 
serve to illustrate some interesting properties of the algo-
rithm. It can be observed that in the final iterations of the 
algorithm, the number of cells in the network oscillates 
between 13 and 16 with an approximate average of 15 
units (right hand scale). It can also be noted that usually, 
when a unit is pruned resulting in a dimension smaller 
than the average dimension (15 units), the MSE tends to 
increase. The explanation, in this case, is quite obvious: 
the network is loosing its capability of representing the 
input data set. In contrast, when another cell is inserted 
into the network, it gains more potential to represent the 
data set and thus, it tends to start reducing the error again.  
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Figure 1: Relationship between the MSE given by Eq. (1) and 
the number of cells in the network. The left-hand axis scale is 
for the MSE (solid line); and the right-hand axis scale is for the 



number of cells (dashed line). To facilitate the interpretation, the 
first two iterations of the algorithm were not depicted.  

Through experimentation, it was also possible to note that 
the aiNet tends to stabilize around an average dimension 
(15 in this case). 

4.2 THE ROLE OF CROSS-VALIDATION IN 
SUPERVISED LEARNING 

Cross-validation is employed in supervised learning as an 
approach to reduce over fitting. Over fitting is the term 
used when a learning system has undergone too much 
training and becomes unable to generalize when a new 
validation set is presented (Prechelt, 1998). This behavior 
can be easily observed by partitioning the data set into a 
few subsets (e.g., learning and validation) and constantly 
evaluating the network performance for the validation set 
after a certain number of adaptation steps run with only 
the learning set. Fig. 2 illustrates idealized curves for the 
errors, where the curve represents the MSE for the learn-
ing and validation sets, with the optimum point in which 
to stop training being illustrated. The problem with this 
approach is that there is no typical behavior. Instead, real 
situations, even for very simple problems, are much more 
complex, presenting a great number of local optima, such 
as the MSE curve depicted in Fig. 1 for the unsupervised 
learning of aiNet. 
In an attempt to prevent this behavior, several cross-
validation stopping criteria can be proposed for super-
vised learning (Prechelt, 1998). For example, training can 
be stopped when the percentage ratio between the valida-
tion error and the smallest training error is greater than a 
given threshold, a procedure called ‘generalization loss’ 
(GL). Another approach is to evaluate the training error 
within a ‘window’ of k iterations. Here an evaluation 
between how much the average training error has in-
creased in relation to the minimum error within this win-
dow of length k. Then the ratio between this value and GL 
is determined. If this ratio is greater than a given thresh-
old, then training is stopped. In all cases, the network 
weight set used is the one obtained before the criterion 
indicated over fitting. 
In the aiNet case, learning is unsupervised according to 
Eq. (3), but the MSE among the best matching network 
cells (winners) and the input data can be evaluated, as is 
the case with the optimization clustering algorithms. As 
illustrated in Fig. 1, the MSE during the learning process 
tends to oscillate around an average value after a number 
of iterations, in a way similar to the validation error for 
supervised learning. Still, alike supervised learning, it 
seems that the differences between the first and the fol-
lowing local optima of this function are not huge. 
 
 

Learning (solid line) / Validation (dashed line)

Iterations  

Figure 2: Idealized training and generalization error curves. 

4.3 A STOPPING CRITERION FOR aiNet 
Inspired by these cross-validation criteria and ideas, the 
following stopping criterion for the aiNet learning algo-
rithm is proposed.  
At each window of k iteration steps of aiNet, evaluate the 
average error (MSEavk), the error at the last iteration of the 
window (MSEendk), and the standard deviation of the error 
within the window (MSEstdk), and store the minimal error 
during the whole iterative process (MSEopt). Note, that as 
learning is unsupervised, there is a single input data set 
and thus, a single error is evaluated; no partition is per-
formed in the data set. The following stopping criterion is 
proposed: 
Stop the iterative process if 
MSEendk > (MSEavk + MSEstdk) after iteration t – k.  
where t is the iteration (time) index. The network memory 
cells and their corresponding distances, 〈Mopt, Dopt〉, are 
those that lead to the smallest error (MSEopt) during all the 
learning process up to the stopping iteration.  
The use of this stopping criterion can be justified as fol-
lows. If a normal distribution for the error behavior close 
to its stationary state is assumed (the error can increase or 
decrease in short amounts), then an error exceeding one 
standard deviation above the average error within a win-
dow k may be regarded as a significant increase in the 
error. In numerical terms, a normal distribution has ap-
proximately 68% of its observations within one standard 
deviation of its mean. Thus, if the error at the end of the 
window k is larger than one standard deviation of the 
mean value of the window, it corresponds to an error rate 
of approximately 68% larger than the average error of the 
window k: this can be said to represent a significant in-
crease in error. 
This observation suggests that the aiNet representation 
capability of the input data is decreasing significantly, and 
usually happens when the network learning capability is 
close to its maximum (given its current dimension). Usu-
ally, if a novel cell is inserted into, or pruned from, the 



network, then aiNet will have to reorganize the attribute 
values of its cells in order to account for the modified 
network structure. Also, the strong deterministic selective 
procedure adopted (k-nearest neighbors in relation to the 
input datum) together with the guided mutation rate, pro-
mote a greedy search around each network cell. This can 
be compared to a gradient ascent (hill-climbing) search 
(Salomon, 1998), and is a process that tends to be 
monotonical as far as an appropriate learning rate and 
network dimension are chosen. In aiNet, the learning rate 
and network dimensions are dynamically adjusted, and 
the search tends to perform steps in the opposite direction 
of the gradient of the MSE among the best matching cells 
and the given input datum. 
This proposed stopping criterion has the property that it 
may be slow to interrupt the iterative learning: this will 
depend on how the learning error is oscillating. aiNet will 
only stop when the network is significantly loosing its 
capability of representing the data. However, it has the 
advantage that it is local to the window k, but not ‘too 
local’; meaning that it allows the learning algorithm to go 
out of some local optima and to look for more ‘global 
optima’ in which to stop the iterative process. Certainly, 
the ‘brevity’ of the determined optima will depend upon 
the length k of the window. Another advantage of the 
process is that it looks for the best set of cells up to the 
stopping iteration.  
As with the cross-validation procedures, this method also 
does not guarantee the convergence of the algorithm, 
therefore a maximum number of iteration steps must be 
defined. Another feature of this approach is that it as-
sumes that the network learning, though asymptotic close 
to the optimal performance, suffers abrupt changes. These 
are consequences of the network pruning/growing of 
cells. If the performance of the algorithm were realisti-
cally asymptotic, then the convergence criterion would 
never be met, as it requires a considerable variation in the 
MSE evaluated. Indeed, this oscillating behavior was 
observed in almost all experiments performed, making the 
application of the proposed algorithm feasible. 

5 A HIERARCHY OF aiNets 
The method proposed in this section aims at enhancing 
the clustering capability of aiNet, such that sub-clusters 
can be detected within a previously defined cluster. It has 
also been found that this approach alleviates the problem 
of setting up the initial values for some user-defined 
learning parameters. The algorithm is presented first, and 
then its basic functioning is discussed. 
The hierarchical algorithm for the aiNet operates as fol-
lows: 
1. Parameter definition: define the initial values for the 

relevant aiNet parameters σs (suppression threshold) 
and r (inconsistency ratio), and set up the decaying 
rate 0 < α < 1 for these parameters; 

2. aiNet learning: run the aiNet learning algorithm (Sec-
tion 3) with the given parameters. The aiNet is said to 
have converged after it meets the stopping criterion 
proposed in Section 4. Note that, despite the window 
size k = 20, this criterion does not require the defini-
tion of any parameter by the user; 

3. Tree branching: each cluster detected by the MST 
constructed from the resultant aiNet, generates an 
offspring aiNet in the next level (or depth) of net-
works, i.e. a new branch of the tree; 

4. Parameters updating: reduce σs and r, e.g. by geo-
metrically decreasing them by the factor α; 

5. Offspring network evaluation: run the offspring net-
work (new branch of the tree) for the updated (re-
duced) parameters; each offspring network is run 
with only the input data that it classifies. This means 
that at each level (depth) of the tree of networks, the 
aiNet responsible for classifying a given portion of 
the data set is only subjected to these data; 

6. Tree convergence: if the offspring network does not 
detect a novel cluster, the process is halted, and the 
tree of networks is completed. Each branch of the 
tree represents a cluster and a sequence of branches 
represents the hierarchy inherent to the data mapped 
into these clusters. Else, while a given offspring net-
work (branch) of the tree is still capable of idenfying 
more than one cluster, return to Step 4 and the proc-
ess continues until no new cluster can be identified. 

The behavior of the algorithm can be explained as fol-
lows. The whole input data set is presented to the first 
network, named root network. At the end of the learning 
process, the root network is capable of identifying the 
most relevant components of the data set by eliminating 
the redundant ones and positioning the network cells in 
the appropriate locations of the space. The MST method 
is then applied with the ratio r of that network level (root), 
and a certain number of clusters are identified. Each de-
tected cluster generates a new network at the same level, 
branched in the root network. The input data is then 
mapped into each of these networks and used to evaluate 
their capabilities of detecting novel clusters within the 
previously identified clusters (sub-networks). The sup-
pression threshold (σs) and inconsistency ratio (r) are 
reduced by the factor α. By reducing (cooling) σs the 
learning process of the offspring network becomes more 
accurate in relation to its input data, i.e., each input datum 
is represented more accuralty by a network cell or group 
of cells. The reduction of σs forces the MSE among the 
input data and the best matching cells to reduce. The 
reduction (cooling) of r allows the network to draw out 
less apparent clusters in the given sub-set of data. After 
reducing both parameters, the aiNet learning algorithm is 
run for each new branch (sub-network) of the tree, until 
no offspring networks are generated. 



6 AN ILLUSTRATIVE EXAMPLE 
In order to illustrate the performance of the proposed 
stopping criterion and hierarchical method, the algorithm 
was applied to a multi-structured bi-dimensional artificial 
data set. As originally proposed (de Castro & Von Zuben, 
2000), the aiNet learning algorithm requires several pa-
rameters to be set up by the user. However, in later work, 
the authors demonstrated empirically that the majority of 
these parameters influence mainly the convergence time 
of the algorithm, not the final network classification. The 
following parameters (used in most of their simulations) 
were adopted for the experiment described here: n = 4, 
d = 10, r = 2.0 and ξ = 10%. For a full description of the 
standard aiNet algorithm and its training parameters, the 
reader is invited to refer to (de Castro & Von Zuben, 
2001). 
This multi-structured data was used to evaluate a hierar-
chical self-organizing map (Costa & Netto, 2001). The 
data set illustrated in Fig. 3, is used to demonstrate that 
even in the presence of very different pattern structures, 
the proposed method is capable of detecting and separat-
ing clusters and, also, of indicating the intrinsic cluster 
hierarchy. The number of patterns in each class (1 to 8) is 
314, 100, 100, 100, 100, 10, 53 and 57 respectively. 
Classes 2 to 5 were generated by multivariate Gaussian 
probability distributions. Class 2 is completely enclosed 
by a circular cluster (class 1). Class 1 is connected to class 
5 by a bridge (class 6) that is a chain of intermediate ob-
jects.  
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Figure 3: Multi-structured benchmark task. Discrete data set 
with labelled input classes. (The input data is taken to be unla-
belled.)  

Although the data set is labelled in the picture, the aiNet 
learning is unsupervised, thus the networks are presented 
with the unlabeled data. To run the networks, the follow-
ing initial value for the suppression threshold was 
choosen: σs = 0.02. The parameters σs and r are decreased 
geometrically by the factor α = 0.9 at each time a new 
level of offspring networks (tree depth) is generated. 
Table 1 summarizes the results obtained for this problem 

and Fig. 5 in the Appendix depicts the tree of networks 
generated, indicating the aiNet hierarchy and thus the 
hierarchy contained in the data set. 
Table 1 presents the cooling schedule of the suppression 
threshold (σs) and inconsistency ratio (r) along with the 
percentage relative compression rate (CR) of each net-
work – CR = (n. of input data)/(n. of aiNet cells), the final 
number of memory cells (m), the number of iterations for 
convergence (Nit), and the total number of iterations per-
formed (TNit). It can be noted from this table, that even if 
all the dimensions of all networks (all branches of the 
tree) were added together, the whole tree of networks has 
a final dimension of 457 cells, corresponding to a final 
compression rate CR = 45.20%. Note also, that the num-
ber of iterations for convergence (Nit) is close to the total 
number of iterations performed (TNit). The MSE corre-
sponds to the error described in Eq. (1). Therefore, the 
small values for the MSE, as presented in Table 1, suggest 
that the network cells are a good representation for the 
input data. 

Table 1: Percentage compression rate (CR) for each network 
relative to the size of the respective input data set; number of 
iterations for convergence of each network (Nit); total number of 
iterations simulated to achieve convergence of the stopping 
criterion (TNit); final number of memory cells (m) in a branch 
network; suppression threshold (σs) and inconsistency ratio (r) 
at each level. See labels in Fig. 5 in Appendix. 

(a) Branch levels 0 and 1. 

 Tree Branch Label 
 0 1-1 1-2 1-3 1-4 1-5 
m 157 60 20 25 15 51 
CR (%) 81.8 85.9 62.3 56.1 85.0 74.5 
MSE×10-3 9.0 8.5 8.3 6.3 7.9 8.3 
Nit 107 83 58 260 80 222 
TNit 120 100 60 280 140 240 
σs 0.02 0.018 
r 2.0 1.80 

(b) Branch level 2. 

 Tree Branch Label 
 2-1 2-2 2-3 2-4 
m 28 28 23 50 
CR (%) 72.55 71.13 77.00 84.57 
MSE×10-3 8.56 7.89 6.96 7.02 
Nit 99 51 113 119 
TNit 100 60 120 160 
σs 0.0162 
r 1.62 

 
The results presented in Fig. 5 reveal interesting proper-
ties of the hierarchical tree of networks. It shows primar-
ily that the method performs a separation of the clusters 



whose inter-distances are largest, resulting in the follow-
ing clusters: ([2], [1,5,6], [7], [3,4], [8]). After detecting 
these most distant clusters, the network learns with only 
the input data mapped into these clusters. The cooling of 
the suppression threshold and inconsistency ratio allowed 
the networks, in the next level of the tree, to look for less 
apparent dissimilarities within the previously defined 
clusters. It was interesting to notice that the algorithm was 
capable of separating cluster 6 from cluster 5, a task diffi-
cult even for a human observer. In the case of aiNet, this 
was only possible because the algorithm generated a re-
duced number of cells to represent cluster 6 (only two 
cells), which were significantly far apart from cluster 5. 
Furthermore, it can be noticed that the hierarchical pat-
terns discovered by this algorithm, are similar to the per-
ception that human observers might have. For example, 
we first identify the larger differences among clusters, and 
then we ‘focus’ our attention on minor details. Note also, 
that at each level of the network, an aiNet with an in-
creased number of cells is generated to represent a cluster. 
Finally, it was observed that the network labelled 1-2 
detected an element disconnected from cluster 5, what 
might be interpreted as an outlier. 
Fig. 4 depicts the evolution of the MSE and the number of 
cells for the root and network 1-2, in the tree of Fig. 5, up 
to the convergence iteration. Note that the convergence 
criterion is capable of selecting the stopping iteration 
when the MSE appears to be in a stationary state; the 
MSE assumes a nearly asymptotical behavior. It can be 
inferred from the characteristics of the stopping criterion 
proposed, that the following iterations of the process were 
characterized by a dramatic increase in the MSE, thus 
promoting the end of the iterative process. 
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Figure 4: MSE (left-hand scale, solid curve) and number of 
cells (right-hand scale, dashed curve) for the root network (a) 
and network 1-2 of the tree depicted in Fig. 5(b). 

7 CONCLUDING REMARKS 
This paper proposed a stopping criterion for the artificial 
immune network (aiNet) model, previously introduced by 
de Castro and Von Zuben (2000). In addition, a hierarchi-
cal approach to training aiNet was proposed. This hierar-
chical method was empirically demonstrated to alleviate 
the problem of setting up some user-defined parameters 
and to allow the detection of inherent hierarchies within 
the input data set. It is important to stress that the hierar-
chical approach presented here is interesting not only in 
the artificial immune network context, but also from a 
graph-theoretical perspective. This is because the method 
describes how the aiNet and MST algorithms can be 
combined in order to identify hierarchies within a data set. 
Through the use of local information concerning the net-
work representation capability, it was possible to propose 
a formal stopping criterion for the network learning proc-
ess that reduces the number of user-defined parameters. It 
is also interesting to note that the proposed hierarchical 
approach for the aiNet performs a sort of breadth-first 
search (Russell & Norvig, 1995). Each cluster detected in 
a given network generates an offspring network that is 
expanded (generates other offsprings) until no more off-
spring (cluster) can be detected. 
The practical applications of the strategies proposed in 
this work are various. With larger and larger datasets 
being produced, as in the area of biology for example, it is 
important to devise alternative methods capable of ana-
lyzing large volumes of data in an automatic and unsu-
pervised form. In particular, the use of hierarchical struc-
tures, when dealing with large amounts of data, becomes 
very important.  
The result presented is a good indicator that the method 
has strong potentialities to find sub-clusters within previ-
ously defined clusters. As natural further extensions of 
this work, we can stress the application of the methods 



(stopping criterion and hierarchical approach) to real-
world problems and their comparison with hierarchical 
self-organizing feature maps, such as the ones used as 
inspiration for the development of this algorithm. Also, 
investigation into the development of a suitable 
visualization tool for a trained aiNet, which is independ-
ent upon the dimension of the input data set, should be 
pursued. Work presented in Timmis (2000) utilized graph 
drawing techniques, such as spring embedded layout to 
display the evolved immune networks. This may be an 
interesting place to start, but when dealing with larger size 
data, work in Mutton and Rodgers (2002), where graph 
theory techniques are used for efficient pre-processing of 
graphs and their subsequent visualization, may prove to 
be a fruitful avenue of investigation. 
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